Suppr超能文献

重叠的阻遏物结合位点导致 FadR 和 ArcA 对大肠杆菌 FadH 的调控具有加性。

Overlapping repressor binding sites result in additive regulation of Escherichia coli FadH by FadR and ArcA.

机构信息

Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA.

出版信息

J Bacteriol. 2010 Sep;192(17):4289-99. doi: 10.1128/JB.00516-10. Epub 2010 Jul 9.

Abstract

Escherichia coli fadH encodes a 2,4-dienoyl reductase that plays an auxiliary role in beta-oxidation of certain unsaturated fatty acids. In the 2 decades since its discovery, FadH biochemistry has been studied extensively. However, the genetic regulation of FadH has been explored only partially. Here we report mapping of the fadH promoter and document its complex regulation by three independent regulators, the fatty acid degradation FadR repressor, the oxygen-responsive ArcA-ArcB two-component system, and the cyclic AMP receptor protein-cyclic AMP (CRP-cAMP) complex. Electrophoretic mobility shift assays demonstrated that FadR binds to the fadH promoter region and that this binding can be specifically reversed by long-chain acyl-coenzyme A (CoA) thioesters. In vivo data combining transcriptional lacZ fusion and real-time quantitative PCR (qPCR) analyses indicated that fadH is strongly repressed by FadR, in agreement with induction of fadH by long-chain fatty acids. Inactivation of arcA increased fadH transcription by >3-fold under anaerobic conditions. Moreover, fadH expression was increased 8- to 10-fold under anaerobic conditions upon deletion of both the fadR and the arcA gene, indicating that anaerobic expression is additively repressed by FadR and ArcA-ArcB. Unlike fadM, a newly reported member of the E. coli fad regulon that encodes another auxiliary beta-oxidation enzyme, fadH was activated by the CRP-cAMP complex in a manner similar to those of the prototypical fad genes. In the absence of the CRP-cAMP complex, repression of fadH expression by both FadR and ArcA-ArcB was very weak, suggesting a possible interplay with other DNA binding proteins.

摘要

大肠杆菌 fadH 编码一种 2,4-二烯酰还原酶,该酶在某些不饱和脂肪酸的β-氧化中起辅助作用。自发现以来的 20 年中,FadH 的生物化学已得到广泛研究。然而,FadH 的遗传调控仅部分得到探索。本文报道了 fadH 启动子的图谱,并记录了其由三个独立调节剂的复杂调控,脂肪酸降解 FadR 抑制剂、氧响应的 ArcA-ArcB 双组分系统和环腺苷酸受体蛋白-环腺苷酸(CRP-cAMP)复合物。电泳迁移率变动分析表明 FadR 结合 fadH 启动子区域,并且这种结合可以通过长链酰基辅酶 A(CoA)硫酯特异性逆转。体内数据结合转录 lacZ 融合和实时定量 PCR(qPCR)分析表明,fadH 受到 FadR 的强烈抑制,这与长链脂肪酸诱导 fadH 一致。在厌氧条件下,arcA 的失活使 fadH 的转录增加了>3 倍。此外,在 fadR 和 arcA 基因缺失的情况下,fadH 的表达在厌氧条件下增加了 8-10 倍,表明厌氧表达被 FadR 和 ArcA-ArcB 加性抑制。与 fadM 不同,fadM 是大肠杆菌 fad 调节子的新成员,编码另一种辅助β-氧化酶,fadH 被 CRP-cAMP 复合物以类似于典型 fad 基因的方式激活。在没有 CRP-cAMP 复合物的情况下,FadR 和 ArcA-ArcB 对 fadH 表达的抑制作用非常弱,这表明与其他 DNA 结合蛋白可能存在相互作用。

相似文献

1
Overlapping repressor binding sites result in additive regulation of Escherichia coli FadH by FadR and ArcA.
J Bacteriol. 2010 Sep;192(17):4289-99. doi: 10.1128/JB.00516-10. Epub 2010 Jul 9.
2
Crosstalk of Escherichia coli FadR with global regulators in expression of fatty acid transport genes.
PLoS One. 2012;7(9):e46275. doi: 10.1371/journal.pone.0046275. Epub 2012 Sep 28.
3
A new member of the Escherichia coli fad regulon: transcriptional regulation of fadM (ybaW).
J Bacteriol. 2009 Oct;191(20):6320-8. doi: 10.1128/JB.00835-09. Epub 2009 Aug 14.
4
Transcriptional Repression of the VC2105 Protein by Vibrio FadR Suggests that It Is a New Auxiliary Member of the fad Regulon.
Appl Environ Microbiol. 2016 Apr 18;82(9):2819-2832. doi: 10.1128/AEM.00293-16. Print 2016 May.
5
Transcriptional regulation of the fad regulon genes of Escherichia coli by ArcA.
Microbiology (Reading). 2006 Aug;152(Pt 8):2207-2219. doi: 10.1099/mic.0.28912-0.
6
Binding of Shewanella FadR to the fabA fatty acid biosynthetic gene: implications for contraction of the fad regulon.
Protein Cell. 2015 Sep;6(9):667-679. doi: 10.1007/s13238-015-0172-2. Epub 2015 Jun 7.
9
The Escherichia coli FadR transcription factor: Too much of a good thing?
Mol Microbiol. 2021 Jun;115(6):1080-1085. doi: 10.1111/mmi.14663. Epub 2020 Dec 19.

引用本文的文献

4
RdmA Is a Key Regulator in Autoinduction of DSF Quorum Quenching in Pseudomonas nitroreducens HS-18.
mBio. 2023 Feb 28;14(1):e0301022. doi: 10.1128/mbio.03010-22. Epub 2022 Dec 20.
5
Degradation of Exogenous Fatty Acids in .
Biomolecules. 2022 Jul 22;12(8):1019. doi: 10.3390/biom12081019.
6
Three enigmatic BioH isoenzymes are programmed in the early stage of mycobacterial biotin synthesis, an attractive anti-TB drug target.
PLoS Pathog. 2022 Jul 11;18(7):e1010615. doi: 10.1371/journal.ppat.1010615. eCollection 2022 Jul.
7
Mutants lacking global regulators, fis and arcA, in Escherichia coli enhanced growth fitness under acetate metabolism by pathway reprogramming.
Appl Microbiol Biotechnol. 2022 Apr;106(8):3231-3243. doi: 10.1007/s00253-022-11890-6. Epub 2022 Apr 13.
9
A single regulator NrtR controls bacterial NAD homeostasis via its acetylation.
Elife. 2019 Oct 9;8:e51603. doi: 10.7554/eLife.51603.
10
Functional definition of NrtR, a remnant regulator of NAD homeostasis in the zoonotic pathogen .
FASEB J. 2019 May;33(5):6055-6068. doi: 10.1096/fj.201802179RR. Epub 2019 Feb 13.

本文引用的文献

1
A new member of the Escherichia coli fad regulon: transcriptional regulation of fadM (ybaW).
J Bacteriol. 2009 Oct;191(20):6320-8. doi: 10.1128/JB.00835-09. Epub 2009 Aug 14.
5
Single-molecule approach to molecular biology in living bacterial cells.
Annu Rev Biophys. 2008;37:417-44. doi: 10.1146/annurev.biophys.37.092607.174640.
6
The mechanisms of carbon catabolite repression in bacteria.
Curr Opin Microbiol. 2008 Apr;11(2):87-93. doi: 10.1016/j.mib.2008.02.007. Epub 2008 Mar 21.
7
Transcriptional regulation of the fad regulon genes of Escherichia coli by ArcA.
Microbiology (Reading). 2006 Aug;152(Pt 8):2207-2219. doi: 10.1099/mic.0.28912-0.
8
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub 2006 Feb 21.
9
Characterization of HCoV-229E fusion core: implications for structure basis of coronavirus membrane fusion.
Biochem Biophys Res Commun. 2006 Jul 7;345(3):1108-15. doi: 10.1016/j.bbrc.2006.04.141. Epub 2006 May 3.
10
The beta-oxidation systems of Escherichia coli and Salmonella enterica are not functionally equivalent.
J Bacteriol. 2006 Jan;188(2):599-608. doi: 10.1128/JB.188.2.599-608.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验