Suppr超能文献

对整个猪冠状动脉血管系统的完整三维重建。

A full 3-D reconstruction of the entire porcine coronary vasculature.

机构信息

Faculty of Biomedical Engineering, Israel Institute of Technology, Haifa, Israel.

出版信息

Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1064-76. doi: 10.1152/ajpheart.00151.2010. Epub 2010 Jul 9.

Abstract

We have previously reconstructed the entire coronary arterial tree of the porcine heart down to the first segment of capillaries. Here, we extend the vascular model through the capillary bed and the entire coronary venous system. The reconstruction was based on comprehensive morphometric data previously measured in the porcine heart. The reconstruction was formulated as a large-scale optimization process, subject to both global constraints relating to the location of the larger veins and to local constraints of measured morphological features. The venous network was partitioned into epicardial, transmural, and perfusion functional subnetworks. The epicardial portion was generated by a simulated annealing search for the optimal coverage of the area perfused by the arterial epicardial vessels. The epicardial subnetwork and coronary arterial capillary network served as boundary conditions for the reconstruction of the in-between transmural and perfusion networks, which were generated to optimize vascular homogeneity. Five sets of full coronary trees, which spanned the entire network down to the capillary level, were reconstructed. The total number of reconstructed venous segments was 17,148,946 ± 1,049,498 (n = 5), which spanned the coronary sinus (order -12) to the first segment of the venous capillary (order 0v). Combined with the reconstructed arterial network, the number of vessel segments for the entire coronary network added up to 27,307,376 ± 1,155,359 (n = 5). The reconstructed full coronary vascular network agreed with the gross anatomy of coronary networks in terms of structure, location of major vessels, and measured morphometric statistics of native coronary networks. This is the first full model of the entire coronary vasculature, which can serve as a foundation for realistic large-scale coronary flow analysis.

摘要

我们之前已经重建了猪心的整个冠状动脉树,直到毛细血管的第一个分支。在这里,我们通过毛细血管床和整个冠状静脉系统扩展了血管模型。重建是基于之前在猪心中测量的综合形态测量数据进行的。重建被表述为一个大规模的优化过程,既要满足与较大静脉位置相关的全局约束,也要满足测量形态特征的局部约束。静脉网络被分为心外膜、穿壁和灌注功能子网。心外膜部分是通过模拟退火搜索动脉心外膜血管灌注区域的最佳覆盖来生成的。心外膜子网和冠状动脉毛细血管网络作为重建中间穿壁和灌注网络的边界条件,这些网络是为优化血管同质性而生成的。重建了五组完整的冠状动脉树,涵盖了整个网络直到毛细血管水平。重建的静脉段总数为 17,148,946 ± 1,049,498(n = 5),跨越冠状窦(-12 级)至静脉毛细血管的第一个分支(0v 级)。结合重建的动脉网络,整个冠状动脉网络的血管段总数达到 27,307,376 ± 1,155,359(n = 5)。重建的完整冠状动脉血管网络在结构、主要血管的位置以及测量的天然冠状动脉网络形态测量统计数据方面与冠状动脉网络的大体解剖学一致。这是整个冠状动脉血管系统的第一个完整模型,可作为现实大规模冠状动脉血流分析的基础。

相似文献

1
A full 3-D reconstruction of the entire porcine coronary vasculature.
Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1064-76. doi: 10.1152/ajpheart.00151.2010. Epub 2010 Jul 9.
3
A novel method for visualization of entire coronary arterial tree.
Ann Biomed Eng. 2007 May;35(5):694-710. doi: 10.1007/s10439-007-9278-x. Epub 2007 Mar 3.
4
A computer reconstruction of the entire coronary arterial tree based on detailed morphometric data.
Ann Biomed Eng. 2005 Aug;33(8):1015-26. doi: 10.1007/s10439-005-5758-z.
5
The coronary vasculature and its reconstruction.
Ann Biomed Eng. 2000 Aug;28(8):903-15. doi: 10.1114/1.1308494.
6
Topology and dimensions of pig coronary capillary network.
Am J Physiol. 1994 Jul;267(1 Pt 2):H319-25. doi: 10.1152/ajpheart.1994.267.1.H319.
7
Development of a model of the coronary arterial tree for the 4D XCAT phantom.
Phys Med Biol. 2011 Sep 7;56(17):5651-63. doi: 10.1088/0031-9155/56/17/012. Epub 2011 Aug 10.
8
Capillary perfusion and wall shear stress are restored in the coronary circulation of hypertrophic right ventricle.
Circ Res. 2007 Feb 2;100(2):273-83. doi: 10.1161/01.RES.0000257777.83431.13. Epub 2007 Jan 11.
10
Diameter asymmetry of porcine coronary arterial trees: structural and functional implications.
Am J Physiol Heart Circ Physiol. 2008 Feb;294(2):H714-23. doi: 10.1152/ajpheart.00818.2007. Epub 2007 Nov 30.

引用本文的文献

1
Review of cardiac-coronary interaction and insights from mathematical modeling.
WIREs Mech Dis. 2024 May-Jun;16(3):e1642. doi: 10.1002/wsbm.1642. Epub 2024 Feb 5.
3
Multiscale modeling of human cerebrovasculature: A hybrid approach using image-based geometry and a mathematical algorithm.
PLoS Comput Biol. 2020 Jun 22;16(6):e1007943. doi: 10.1371/journal.pcbi.1007943. eCollection 2020 Jun.
4
Effects of myocardial function and systemic circulation on regional coronary perfusion.
J Appl Physiol (1985). 2020 May 1;128(5):1106-1122. doi: 10.1152/japplphysiol.00450.2019. Epub 2020 Feb 20.
5
Topologic and Hemodynamic Characteristics of the Human Coronary Arterial Circulation.
Front Physiol. 2020 Jan 23;10:1611. doi: 10.3389/fphys.2019.01611. eCollection 2019.
6
Morphometric Reconstruction of Coronary Vasculature Incorporating Uniformity of Flow Dispersion.
Front Physiol. 2018 Aug 29;9:1069. doi: 10.3389/fphys.2018.01069. eCollection 2018.
8
Computational Assessment of Blood Flow Heterogeneity in Peritoneal Dialysis Patients' Cardiac Ventricles.
Front Physiol. 2018 May 17;9:511. doi: 10.3389/fphys.2018.00511. eCollection 2018.
9
Intraspecific scaling laws are preserved in ventricular hypertrophy but not in heart failure.
Am J Physiol Heart Circ Physiol. 2016 Nov 1;311(5):H1108-H1117. doi: 10.1152/ajpheart.00084.2016. Epub 2016 Aug 19.
10
Estimation of the flow resistances exerted in coronary arteries using a vessel length-based method.
Pflugers Arch. 2016 Aug;468(8):1449-58. doi: 10.1007/s00424-016-1831-8. Epub 2016 Jun 11.

本文引用的文献

1
Mechanisms of myocardium-coronary vessel interaction.
Am J Physiol Heart Circ Physiol. 2010 Mar;298(3):H861-73. doi: 10.1152/ajpheart.00925.2009. Epub 2009 Dec 4.
2
Wall thickness of coronary vessels varies transmurally in the LV but not the RV: implications for local stress distribution.
Am J Physiol Heart Circ Physiol. 2009 Aug;297(2):H750-8. doi: 10.1152/ajpheart.01136.2008. Epub 2009 May 29.
3
Biophysical model of the spatial heterogeneity of myocardial flow.
Biophys J. 2009 May 20;96(10):4035-43. doi: 10.1016/j.bpj.2009.02.047.
4
Coronary venous retroperfusion: an old concept, a new approach.
J Appl Physiol (1985). 2008 May;104(5):1266-72. doi: 10.1152/japplphysiol.00063.2008. Epub 2008 Feb 21.
5
Diameter asymmetry of porcine coronary arterial trees: structural and functional implications.
Am J Physiol Heart Circ Physiol. 2008 Feb;294(2):H714-23. doi: 10.1152/ajpheart.00818.2007. Epub 2007 Nov 30.
6
A hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree.
Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H2623-33. doi: 10.1152/ajpheart.00987.2006. Epub 2007 Jan 5.
7
Cross-talk between cardiac muscle and coronary vasculature.
Physiol Rev. 2006 Oct;86(4):1263-308. doi: 10.1152/physrev.00029.2005.
8
Pulsatile blood flow in the entire coronary arterial tree: theory and experiment.
Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1074-87. doi: 10.1152/ajpheart.00200.2006. Epub 2006 Apr 14.
10
Functional hierarchy of coronary circulation: direct evidence of a structure-function relation.
Am J Physiol Heart Circ Physiol. 2005 Dec;289(6):H2559-65. doi: 10.1152/ajpheart.00561.2005. Epub 2005 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验