Fan Lei, Namani Ravi, Choy Jenny S, Kassab Ghassan S, Lee Lik Chuan
Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States.
California Medical Innovation Institute, San Diego, CA, United States.
Front Physiol. 2020 Aug 14;11:915. doi: 10.3389/fphys.2020.00915. eCollection 2020.
Mechanical dyssynchrony affects left ventricular (LV) mechanics and coronary perfusion. Due to the confounding effects of their bi-directional interactions, the mechanisms behind these changes are difficult to isolate from experimental and clinical studies alone. Here, we develop and calibrate a closed-loop computational model that couples the systemic circulation, LV mechanics, and coronary perfusion. The model is applied to simulate the impact of mechanical dyssynchrony on coronary flow in the left anterior descending artery (LAD) and left circumflex artery (LCX) territories caused by regional alterations in perfusion pressure and intramyocardial pressure (). We also investigate the effects of regional coronary flow alterations on regional LV contractility in mechanical dyssynchrony based on prescribed contractility-flow relationships without considering autoregulation. The model predicts that LCX and LAD flows are reduced by 7.2%, and increased by 17.1%, respectively, in mechanical dyssynchrony with a systolic dyssynchrony index of 10% when the LAD's is synchronous with the arterial pressure. The LAD flow is reduced by 11.6% only when its is delayed with respect to the arterial pressure by 0.07 s. When contractility is sensitive to coronary flow, mechanical dyssynchrony can affect global LV mechanics, s and contractility that in turn, further affect the coronary flow in a feedback loop that results in a substantial reduction of /, indicative of ischemia. Taken together, these findings imply that regional s play a significant role in affecting regional coronary flows in mechanical dyssynchrony and the changes in regional coronary flow may produce ischemia when contractility is sensitive to the changes in coronary flow.
机械性不同步会影响左心室(LV)力学和冠状动脉灌注。由于它们双向相互作用的混杂效应,仅从实验和临床研究中很难分离出这些变化背后的机制。在此,我们开发并校准了一个闭环计算模型,该模型将体循环、左心室力学和冠状动脉灌注耦合在一起。该模型用于模拟机械性不同步对左前降支(LAD)和左旋支(LCX)区域冠状动脉血流的影响,这些影响是由灌注压力和心肌内压力的区域改变引起的。我们还基于规定的收缩性-血流关系,在不考虑自动调节的情况下,研究了机械性不同步中区域冠状动脉血流改变对区域左心室收缩性的影响。该模型预测,当LAD的[具体参数未给出]与动脉压同步时,在收缩不同步指数为10%的机械性不同步情况下,LCX和LAD血流分别减少7.2%和增加17.1%。仅当LAD的[具体参数未给出]相对于动脉压延迟0.07 s时,LAD血流减少11.6%。当收缩性对冠状动脉血流敏感时,机械性不同步会影响整体左心室力学、[具体参数未给出]和收缩性,进而在反馈回路中进一步影响冠状动脉血流,导致[具体参数未给出]/[具体参数未给出]大幅降低,提示缺血。综上所述,这些发现表明区域[具体参数未给出]在机械性不同步中影响区域冠状动脉血流方面起重要作用,并且当收缩性对冠状动脉血流变化敏感时,区域冠状动脉血流的改变可能会产生缺血。