Suppr超能文献

通过 PC-ANN 探索一些镇痛化合物的定量构效关系。

Exploring QSARs of some analgesic compounds by PC-ANN.

机构信息

Faculty of Pharmacy, Al-Quds University, PO Box 20002, Jerusalem, Palestine.

出版信息

Chem Biol Drug Des. 2010 Sep 1;76(3):255-62. doi: 10.1111/j.1747-0285.2010.01004.x. Epub 2010 Jul 5.

Abstract

Quantitative structure-activity relationship study was performed to understand analgesic activity for a set of 95 heterogeneous analgesic compounds. This study was performed by using the principal component-artificial neural network modeling method, with application of eigenvalue ranking factor selection procedure. The results obtained by principal component-artificial neural network give advanced regression models with good prediction ability using a relatively low number of principal components. A 0.834 correlation coefficient was obtained using principal component-artificial neural network with six extracted principal components.

摘要

进行了定量构效关系研究,以了解 95 种异构镇痛化合物的镇痛活性。本研究采用主成分-人工神经网络建模方法,并应用特征值排序因子选择程序。主成分-人工神经网络得到的结果使用相对较少的主成分给出了具有良好预测能力的先进回归模型。使用提取的六个主成分的主成分-人工神经网络得到了 0.834 的相关系数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验