Suppr超能文献

微生物电化学系统中的电活性混合培养生物膜:温度对生物膜形成和性能的作用。

Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance.

机构信息

Institute of Environmental and Sustainable Chemistry, Sustainable Chemistry and Energy Research, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.

出版信息

Biosens Bioelectron. 2010 Oct 15;26(2):803-8. doi: 10.1016/j.bios.2010.06.019. Epub 2010 Jun 23.

Abstract

In this paper we investigate the temperature dependence and temperature limits of waste water derived anodic microbial biofilms. We demonstrate that these biofilms are active in a temperature range between 5°C and 45°C. Elevated temperatures during initial biofilm growth not only accelerate the biofilm formation process, they also influence the bioelectrocatalytic performance of these biofilms when measured at identical operation temperatures. For example, the time required for biofilm formation decreases from above 40 days at 15°C to 3.5 days at 35°C. Biofilms grown at elevated temperatures are more electrochemically active at these temperatures than those grown at lower incubation temperature. Thus, at 30°C current densities of 520 μA cm(-2) and 881 μA cm(-2) are achieved by biofilms grown at 22°C and 35°C, respectively. Vice versa, and of great practical relevance for waste water treatment plants in areas of moderate climate, at low operation temperatures, biofilms grown at lower temperatures outperform those grown at higher temperatures. We further demonstrate that all biofilms possess similar lower (0°C) and upper (50°C) temperature limits--defining the operational limits of a respective microbial fuel cell or microbial biosensor--as well as similar electrochemical electron transfer characteristics.

摘要

在本文中,我们研究了废水电极微生物生物膜的温度依赖性和温度极限。我们证明,这些生物膜在 5°C 至 45°C 的温度范围内具有活性。初始生物膜生长过程中的高温不仅加速了生物膜的形成过程,而且还影响了在相同操作温度下测量时这些生物膜的生物电化学性能。例如,在 15°C 时,生物膜形成所需的时间超过 40 天,而在 35°C 时则减少到 3.5 天。在这些温度下,在较高温度下生长的生物膜比在较低孵育温度下生长的生物膜具有更高的电化学活性。因此,在 30°C 下,在 22°C 和 35°C 下生长的生物膜分别实现了 520 μA cm(-2)和 881 μA cm(-2)的电流密度。反之,对于气候温和地区的废水处理厂来说,这具有很大的实际意义,在低操作温度下,在较低温度下生长的生物膜优于在较高温度下生长的生物膜。我们进一步证明,所有生物膜都具有相似的较低(0°C)和较高(50°C)温度极限-定义了相应微生物燃料电池或微生物生物传感器的操作极限-以及相似的电化学电子转移特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验