The Psychiatric Institute, Department of Psychiatry, University of Illinois, Chicago, USA.
Neuropsychopharmacology. 2010 Sep;35(10):2009-20. doi: 10.1038/npp.2010.85. Epub 2010 Jul 14.
The study of CpG methylation of genomic DNA in neurons has emerged from the shadow of cancer biology into a fundamental investigation of neuronal physiology. This advance began with the discovery that catalytic and receptor proteins related to the insertion and recognition of this chemical mark are robustly expressed in neurons. At the smallest scale of analysis is the methylation of a single cytosine base within a regulatory cognate sequence. This singular alteration in a nucleotide can profoundly modify transcription factor binding with a consequent effect on the primary 'transcript'. At the single promoter level, the methylation-demethylation of CpG islands and associated alterations in local chromatin assemblies creates a type of cellular 'memory' capable of long-term regulation of transcription particularly in stages of brain development, differentiation, and maturation. Finally, at the genome-wide scale, methylation studies from post-mortem brains suggest that CpG methylation may serve to cap the genome into active and inactive territories introducing a 'masking' function. This may facilitate rapid DNA-protein interactions by ambient transcriptional proteins onto actively networked gene promoters. Beyond this broad portrayal, there are vast gaps in our understanding of the pathway between neuronal activity and CpG methylation. These include the regulation in post-mitotic neurons of the executor proteins, such as the DNA methyltransferases, the elusive and putative demethylases, and the interactions with histone modifying enzymes.
从癌症生物学的阴影中,对神经元基因组 DNA 的 CpG 甲基化的研究已经进入了对神经元生理学的基础研究。这一进展始于发现与这种化学标记的插入和识别相关的催化和受体蛋白在神经元中强烈表达。在最小的分析尺度上,是单个调节序列内单个胞嘧啶碱基的甲基化。核苷酸的这种单一改变可以深刻地改变转录因子的结合,从而对主要的“转录物”产生影响。在单个启动子水平上,CpG 岛的甲基化-去甲基化以及相关的局部染色质组装的改变,在大脑发育、分化和成熟的特定阶段,创造了一种细胞“记忆”,能够对转录进行长期调控。最后,在全基因组范围内,来自尸检大脑的甲基化研究表明,CpG 甲基化可能有助于将基因组分割成活跃和非活跃的区域,从而引入“屏蔽”功能。这可能通过环境转录蛋白快速地与活跃的网络基因启动子进行 DNA-蛋白相互作用。除了这种广泛的描述之外,我们对神经元活动和 CpG 甲基化之间的通路的理解还存在很大的差距。这些差距包括有丝分裂后神经元中执行器蛋白(如 DNA 甲基转移酶)、难以捉摸和推测的去甲基酶的调节,以及与组蛋白修饰酶的相互作用。