Suppr超能文献

拓展 pKa 预测精度:高通量 pKa 测量以理解新化学系列的 pKa 调节。

Extending pKa prediction accuracy: high-throughput pKa measurements to understand pKa modulation of new chemical series.

机构信息

Laboratory for Chemometrics and Cheminformatics, Department of Chemistry, Università degli Studi di Perugia, via Elce di Sotto 10, 06123 Perugia, Italy.

出版信息

Eur J Med Chem. 2010 Sep;45(9):4270-9. doi: 10.1016/j.ejmech.2010.06.026. Epub 2010 Jun 23.

Abstract

We have recently developed a tool, MoKa, to predict the pK(a) of organic compounds using a large dataset of over 26,500 literature pK(a) values as a training set. However, predicting accurately pK(a) (<0.5 pH units) remains challenging for novel series, and this can be a drawback in the optimization of activity and ADME properties of lead compounds. To address this issue it is important to expand our knowledge of pK(a) determinants, therefore we have conducted high-throughput pK(a) measurements by using Spectral Gradient Analysis (SGA) on novel series of compounds selected from vendor databases. Here we report our findings on the effect of specific chemical groups and steric constraints on the pK(a) of common functionalities in medicinal chemistry, such as amines, sulfonamides, and amides. Furthermore, we report the pK(a) of ionizable groups that were not well represented in the database of literature pK(a) of MoKalpha, such as hydrazide derivatives. These findings helped us to enhance MoKalpha, which is here benchmarked on a set of experimental pK(a) values from the Roche in-house library (N = 5581; RMSE = 1.09; R2 = 0.82). The accuracy of the predictions was greatly improved (RMSE = 0.49, R2 = 0.96) after training the software by using the automated tool Kibitzer with 6226 pK(a) values taken from a different set of Roche compounds appropriately selected, and this demonstrates the value of using high-throughput pK(a) measurements to expand the training set of pK(a) values used by the software MoKalpha.

摘要

我们最近开发了一种工具 MoKa,它使用超过 26500 个文献 pK(a) 值的大型数据集作为训练集来预测有机化合物的 pK(a)。然而,准确预测 pK(a)(<0.5 pH 单位)对于新系列化合物仍然具有挑战性,这在优化先导化合物的活性和 ADME 性质方面可能是一个缺点。为了解决这个问题,扩大我们对 pK(a) 决定因素的了解非常重要,因此我们使用来自供应商数据库的新系列化合物进行了高通量 pK(a) 测量,使用光谱梯度分析 (SGA)。在这里,我们报告了我们关于特定化学基团和空间限制对药物化学中常见官能团(如胺、磺胺和酰胺)的 pK(a) 的影响的发现。此外,我们还报告了在 MoKalpha 的文献 pK(a) 数据库中没有很好表示的可电离基团的 pK(a),例如酰肼衍生物。这些发现帮助我们增强了 MoKalpha,我们在一组来自罗氏内部库的实验 pK(a) 值(N = 5581;RMSE = 1.09;R2 = 0.82)上对其进行了基准测试。在使用自动工具 Kibitzer 对软件进行训练后,预测的准确性得到了极大的提高(RMSE = 0.49,R2 = 0.96),该工具使用了从适当选择的不同的罗氏化合物中获取的 6226 个 pK(a) 值,这证明了使用高通量 pK(a) 测量来扩展软件 MoKalpha 使用的 pK(a) 值训练集的价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验