Suppr超能文献

藻类光合作用作为能源、饲料和食品生产可持续发展的主要驱动力。

Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production.

机构信息

Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.

出版信息

Mar Biotechnol (NY). 2010 Nov;12(6):619-29. doi: 10.1007/s10126-010-9311-1. Epub 2010 Jul 20.

Abstract

High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO₂ into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO₂ into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps--after acid hydrolysis--as a complex, animal-free serum for growth of mammalian cells in vitro.

摘要

高油价和伴随化石燃料使用而产生的全球变暖,促使人们寻求替代能源供应形式。光合作用生物燃料的生产就是其中之一,因为它利用可再生资源。阳光被用于将水和二氧化碳转化为生物质。目前并行使用两种策略:通过糖发酵转化为乙醇的植物生产和通过酯交换转化为生物柴油的生产。然而,这两种策略都加剧了其他问题,包括区域养分平衡和世界粮食供应问题,并且都受到光合作用效率低下的限制。因此,最大限度地提高自然和工程光合作用的效率至关重要。藻类光合作用是实现这一目标的首选系统,特别是对于能源应用而言。对于这种应用,完全将二氧化碳转化为生物质不是必需的。合成生物学的创新方法允许通过所谓的 Photanol 方法将光合作用和发酵代谢结合起来,通过利用可自然转化的蓝藻 Synechocystis sp. PCC 6803 从卡尔文循环中间体直接形成生物燃料。除了提供运输能源和化学原料外,光合作用将继续用于食品和饲料应用。对于这种应用,随着世界人口的持续增长,效率的重要性将变得越来越重要。光合细胞可以以各种创新形式用于食品应用,例如,作为肉食性鱼类饮食中鱼类蛋白的替代品,或者经过酸水解后,作为一种复杂的、无动物的血清,用于体外培养哺乳动物细胞。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验