Angermayr S Andreas, Hellingwerf Klaas J, Lindblad Peter, de Mattos M Joost Teixeira
Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.
Curr Opin Biotechnol. 2009 Jun;20(3):257-63. doi: 10.1016/j.copbio.2009.05.011. Epub 2009 Jun 17.
The world's future energy demand calls for a sustainable alternative for the use of fossil fuels, to restrict further global warming. Harvesting solar energy via photosynthesis is one of Nature's remarkable achievements. Existing technologies exploit this process for energy 'production' via processing of, for example, part of plant biomass into ethanol, and of algal biomass into biodiesel. Fortifying photosynthetic organisms with the ability to produce biofuels directly would bypass the need to synthesize all the complex chemicals of 'biomass'. A promising way to achieve this is to redirect cyanobacterial intermediary metabolism by channeling (Calvin cycle) intermediates into fermentative metabolic pathways. This review describes this approach via the biosynthesis of fermentation end products, like alcohols and hydrogen, driven by solar energy, from water (and CO2).
全球未来的能源需求要求找到一种可持续的替代方案来使用化石燃料,以限制全球气候进一步变暖。通过光合作用获取太阳能是大自然的卓越成就之一。现有技术利用这一过程,通过将例如部分植物生物质加工成乙醇,以及将藻类生物质加工成生物柴油来进行能源“生产”。增强光合生物直接生产生物燃料的能力将无需合成“生物质”的所有复杂化学物质。实现这一目标的一个有前景的方法是通过将(卡尔文循环)中间产物导入发酵代谢途径来重新引导蓝藻的中间代谢。这篇综述描述了通过太阳能驱动,从水(和二氧化碳)生物合成发酵终产物(如醇类和氢气)的这种方法。