Suppr超能文献

从包络调制谱中区分构音障碍类型。

Discriminating dysarthria type from envelope modulation spectra.

机构信息

Motor Speech Disorders Laboratory, Arizona State University Coor, 870102, Tempe, AZ 85287, USA.

出版信息

J Speech Lang Hear Res. 2010 Oct;53(5):1246-55. doi: 10.1044/1092-4388(2010/09-0121). Epub 2010 Jul 19.

Abstract

PURPOSE

Previous research demonstrated the ability of temporally based rhythm metrics to distinguish among dysarthrias with different prosodic deficit profiles (J. M. Liss et al., 2009). The authors examined whether comparable results could be obtained by an automated analysis of speech envelope modulation spectra (EMS), which quantifies the rhythmicity of speech within specified frequency bands.

METHOD

EMS was conducted on sentences produced by 43 speakers with 1 of 4 types of dysarthria and healthy controls. The EMS consisted of the spectra of the slow-rate (up to 10 Hz) amplitude modulations of the full signal and 7 octave bands ranging in center frequency from 125 to 8000 Hz. Six variables were calculated for each band relating to peak frequency and amplitude and relative energy above, below, and in the region of 4 Hz. Discriminant function analyses (DFA) determined which sets of predictor variables best discriminated between and among groups.

RESULTS

Each of 6 DFAs identified 2-6 of the 48 predictor variables. These variables achieved 84%-100% classification accuracy for group membership.

CONCLUSIONS

Dysarthrias can be characterized by quantifiable temporal patterns in acoustic output. Because EMS analysis is automated and requires no editing or linguistic assumptions, it shows promise as a clinical and research tool.

摘要

目的

先前的研究表明,基于时间的节奏度量能够区分具有不同韵律缺陷特征的构音障碍(J. M. Liss 等人,2009 年)。作者研究了通过自动分析语音包络调制谱(EMS)是否可以获得类似的结果,EMS 量化了特定频带内语音的节奏性。

方法

对 43 位患有 4 种构音障碍中的 1 种和健康对照组的说话者进行了 EMS 测试。EMS 由全信号和 7 个中心频率从 125 到 8000 Hz 的倍频程范围内的慢率(高达 10 Hz)幅度调制的频谱组成。为每个频段计算了 6 个与峰值频率和幅度以及 4 Hz 上下及区域内的相对能量有关的变量。判别函数分析(DFA)确定了哪些组预测变量最能区分和区分组之间的关系。

结果

6 个 DFA 中的每一个都确定了 48 个预测变量中的 2-6 个。这些变量对群体归属的分类准确率达到 84%-100%。

结论

构音障碍可以通过声学输出的可量化时间模式来描述。由于 EMS 分析是自动化的,不需要编辑或语言假设,因此它有望成为一种临床和研究工具。

相似文献

1
Discriminating dysarthria type from envelope modulation spectra.
J Speech Lang Hear Res. 2010 Oct;53(5):1246-55. doi: 10.1044/1092-4388(2010/09-0121). Epub 2010 Jul 19.
2
Vowel acoustics in dysarthria: speech disorder diagnosis and classification.
J Speech Lang Hear Res. 2014 Feb;57(1):57-67. doi: 10.1044/1092-4388(2013/12-0262).
3
Quantifying speech rhythm abnormalities in the dysarthrias.
J Speech Lang Hear Res. 2009 Oct;52(5):1334-52. doi: 10.1044/1092-4388(2009/08-0208). Epub 2009 Aug 28.
4
Classifications of vocalic segments from articulatory kinematics: healthy controls and speakers with dysarthria.
J Speech Lang Hear Res. 2011 Oct;54(5):1302-11. doi: 10.1044/1092-4388(2011/09-0193). Epub 2011 Jun 6.
5
Vowel acoustics in dysarthria: mapping to perception.
J Speech Lang Hear Res. 2014 Feb;57(1):68-80. doi: 10.1044/1092-4388(2013/12-0263).
6
Acoustic and intelligibility characteristics of sentence production in neurogenic speech disorders.
Folia Phoniatr Logop. 2001 Jan-Feb;53(1):1-18. doi: 10.1159/000052649.
7
Toward phonetic intelligibility testing in dysarthria.
J Speech Hear Disord. 1989 Nov;54(4):482-99. doi: 10.1044/jshd.5404.482.
8
Acoustic and perceptual consequences of clear and loud speech.
Folia Phoniatr Logop. 2013;65(4):214-20. doi: 10.1159/000355867. Epub 2014 Feb 5.
9
Breath-group intelligibility in dysarthria: characteristics and underlying correlates.
J Speech Lang Hear Res. 2005 Dec;48(6):1294-310. doi: 10.1044/1092-4388(2005/090).
10
Examining the effects of multiple sclerosis on speech production: does phonetic structure matter?
J Commun Disord. 2008 Jan-Feb;41(1):49-69. doi: 10.1016/j.jcomdis.2007.03.009. Epub 2007 Apr 4.

引用本文的文献

1
Acoustic Measures of Word-Level Prosody in Childhood Apraxia of Speech: An Initial Validation Study.
Am J Speech Lang Pathol. 2025 Jul 29;34(4S):2485-2508. doi: 10.1044/2025_AJSLP-24-00260. Epub 2025 Jul 15.
2
Differentiating upper- and lower motor neuron diseases using automated acoustic analysis.
Amyotroph Lateral Scler Frontotemporal Degener. 2025 Jun 1:1-11. doi: 10.1080/21678421.2025.2506444.
3
An acoustic model of speech dysprosody in patients with Parkinson's disease.
Front Hum Neurosci. 2025 Apr 28;19:1566274. doi: 10.3389/fnhum.2025.1566274. eCollection 2025.
4
The impact of headache intensity on speech in participants with migraine and acute post-traumatic headache.
Headache. 2025 Mar;65(3):506-515. doi: 10.1111/head.14809. Epub 2024 Aug 28.
6
Speech Entrainment in Adolescent Conversations: A Developmental Perspective.
J Speech Lang Hear Res. 2023 Aug 17;66(8S):3132-3150. doi: 10.1044/2023_JSLHR-22-00263. Epub 2023 Apr 18.
7
A Preliminary Study of Speech Rhythm Differences as Markers of Stuttering Persistence in Preschool-Age Children.
J Speech Lang Hear Res. 2023 Mar 7;66(3):931-950. doi: 10.1044/2022_JSLHR-22-00126. Epub 2023 Feb 24.
8
Differentiation of Motor Speech Disorders through the Seven Deviance Scores from MonPaGe-2.0.s.
Brain Sci. 2022 Oct 29;12(11):1471. doi: 10.3390/brainsci12111471.
9
[Diagnostic Value of Speech Acoustic Analysis in Parkinson's Disease].
Sichuan Da Xue Xue Bao Yi Xue Ban. 2022 Jul;53(4):726-731. doi: 10.12182/20220760304.
10
Sync Pending: Characterizing Conversational Entrainment in Dysarthria Using a Multidimensional, Clinically Informed Approach.
J Speech Lang Hear Res. 2019 Dec 19;63(1):83-94. doi: 10.1044/2019_JSLHR-19-00194. Print 2020 Jan 22.

本文引用的文献

1
Quantifying speech rhythm abnormalities in the dysarthrias.
J Speech Lang Hear Res. 2009 Oct;52(5):1334-52. doi: 10.1044/1092-4388(2009/08-0208). Epub 2009 Aug 28.
2
Low-frequency Fourier analysis of speech rhythm.
J Acoust Soc Am. 2008 Aug;124(2):EL34-9. doi: 10.1121/1.2947626.
3
Acoustic cues to lexical segmentation: a study of resynthesized speech.
J Acoust Soc Am. 2007 Dec;122(6):3678-87. doi: 10.1121/1.2801545.
4
Toward an acoustic typology of motor speech disorders.
Clin Linguist Phon. 2003 Sep;17(6):427-45. doi: 10.1080/0269920031000086248.
5
Quantitative characterizations of speech rhythm: syllable-timing in Singapore English.
Lang Speech. 2000 Oct-Dec;43(Pt 4):377-401. doi: 10.1177/00238309000430040301.
6
Lexical boundary error analysis in hypokinetic and ataxic dysarthria.
J Acoust Soc Am. 2000 Jun;107(6):3415-24. doi: 10.1121/1.429412.
7
Correlates of linguistic rhythm in the speech signal.
Cognition. 1999 Dec 17;73(3):265-92. doi: 10.1016/s0010-0277(99)00058-x.
9
Language discrimination by newborns: toward an understanding of the role of rhythm.
J Exp Psychol Hum Percept Perform. 1998 Jun;24(3):756-66. doi: 10.1037//0096-1523.24.3.756.
10
Effect of temporal envelope smearing on speech reception.
J Acoust Soc Am. 1994 Feb;95(2):1053-64. doi: 10.1121/1.408467.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验