Motor Speech Disorders Laboratory, Arizona State University Coor, 870102, Tempe, AZ 85287, USA.
J Speech Lang Hear Res. 2010 Oct;53(5):1246-55. doi: 10.1044/1092-4388(2010/09-0121). Epub 2010 Jul 19.
Previous research demonstrated the ability of temporally based rhythm metrics to distinguish among dysarthrias with different prosodic deficit profiles (J. M. Liss et al., 2009). The authors examined whether comparable results could be obtained by an automated analysis of speech envelope modulation spectra (EMS), which quantifies the rhythmicity of speech within specified frequency bands.
EMS was conducted on sentences produced by 43 speakers with 1 of 4 types of dysarthria and healthy controls. The EMS consisted of the spectra of the slow-rate (up to 10 Hz) amplitude modulations of the full signal and 7 octave bands ranging in center frequency from 125 to 8000 Hz. Six variables were calculated for each band relating to peak frequency and amplitude and relative energy above, below, and in the region of 4 Hz. Discriminant function analyses (DFA) determined which sets of predictor variables best discriminated between and among groups.
Each of 6 DFAs identified 2-6 of the 48 predictor variables. These variables achieved 84%-100% classification accuracy for group membership.
Dysarthrias can be characterized by quantifiable temporal patterns in acoustic output. Because EMS analysis is automated and requires no editing or linguistic assumptions, it shows promise as a clinical and research tool.
先前的研究表明,基于时间的节奏度量能够区分具有不同韵律缺陷特征的构音障碍(J. M. Liss 等人,2009 年)。作者研究了通过自动分析语音包络调制谱(EMS)是否可以获得类似的结果,EMS 量化了特定频带内语音的节奏性。
对 43 位患有 4 种构音障碍中的 1 种和健康对照组的说话者进行了 EMS 测试。EMS 由全信号和 7 个中心频率从 125 到 8000 Hz 的倍频程范围内的慢率(高达 10 Hz)幅度调制的频谱组成。为每个频段计算了 6 个与峰值频率和幅度以及 4 Hz 上下及区域内的相对能量有关的变量。判别函数分析(DFA)确定了哪些组预测变量最能区分和区分组之间的关系。
6 个 DFA 中的每一个都确定了 48 个预测变量中的 2-6 个。这些变量对群体归属的分类准确率达到 84%-100%。
构音障碍可以通过声学输出的可量化时间模式来描述。由于 EMS 分析是自动化的,不需要编辑或语言假设,因此它有望成为一种临床和研究工具。