Suppr超能文献

量化构音障碍中的言语节奏异常。

Quantifying speech rhythm abnormalities in the dysarthrias.

作者信息

Liss Julie M, White Laurence, Mattys Sven L, Lansford Kaitlin, Lotto Andrew J, Spitzer Stephanie M, Caviness John N

机构信息

Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, USA.

出版信息

J Speech Lang Hear Res. 2009 Oct;52(5):1334-52. doi: 10.1044/1092-4388(2009/08-0208). Epub 2009 Aug 28.

Abstract

PURPOSE

In this study, the authors examined whether rhythm metrics capable of distinguishing languages with high and low temporal stress contrast also can distinguish among control and dysarthric speakers of American English with perceptually distinct rhythm patterns. Methods Acoustic measures of vocalic and consonantal segment durations were obtained for speech samples from 55 speakers across 5 groups (hypokinetic, hyperkinetic, flaccid-spastic, ataxic dysarthrias, and controls). Segment durations were used to calculate standard and new rhythm metrics. Discriminant function analyses (DFAs) were used to determine which sets of predictor variables (rhythm metrics) best discriminated between groups (control vs. dysarthrias; and among the 4 dysarthrias). A cross-validation method was used to test the robustness of each original DFA.

RESULTS

The majority of classification functions were more than 80% successful in classifying speakers into their appropriate group. New metrics that combined successive vocalic and consonantal segments emerged as important predictor variables. DFAs pitting each dysarthria group against the combined others resulted in unique constellations of predictor variables that yielded high levels of classification accuracy.

CONCLUSIONS

This study confirms the ability of rhythm metrics to distinguish control speech from dysarthrias and to discriminate dysarthria subtypes. Rhythm metrics show promise for use as a rational and objective clinical tool.

摘要

目的

在本研究中,作者检验了能够区分具有高低时间重音对比的语言的节奏指标,是否也能区分具有明显节奏模式的美国英语正常和构音障碍说话者。方法:获取了5组(运动减退型、运动亢进型、弛缓-痉挛型、共济失调型构音障碍以及正常对照组)55名说话者语音样本中元音和辅音片段时长的声学测量数据。片段时长用于计算标准和新的节奏指标。判别函数分析(DFA)用于确定哪些预测变量集(节奏指标)能最佳区分不同组(正常对照组与构音障碍组;以及4种构音障碍组之间)。采用交叉验证方法来检验每个原始DFA的稳健性。

结果

大多数分类函数将说话者正确分类到相应组的成功率超过80%。结合连续元音和辅音片段的新指标成为重要的预测变量。将每个构音障碍组与其他组联合进行DFA分析,得到了能产生高分类准确率的独特预测变量组合。

结论

本研究证实了节奏指标区分正常语音和构音障碍以及区分构音障碍亚型的能力。节奏指标有望成为一种合理且客观的临床工具。

相似文献

1
Quantifying speech rhythm abnormalities in the dysarthrias.量化构音障碍中的言语节奏异常。
J Speech Lang Hear Res. 2009 Oct;52(5):1334-52. doi: 10.1044/1092-4388(2009/08-0208). Epub 2009 Aug 28.
2
Discriminating dysarthria type from envelope modulation spectra.从包络调制谱中区分构音障碍类型。
J Speech Lang Hear Res. 2010 Oct;53(5):1246-55. doi: 10.1044/1092-4388(2010/09-0121). Epub 2010 Jul 19.
6
Quantification of rhythm problems in disordered speech: a re-evaluation.言语紊乱中节律问题的量化:重新评估
Philos Trans R Soc Lond B Biol Sci. 2014 Dec 19;369(1658):20130404. doi: 10.1098/rstb.2013.0404.
10
Orofacial Muscle Strength across the Dysarthrias.构音障碍患者的口面部肌肉力量
Brain Sci. 2022 Mar 10;12(3):365. doi: 10.3390/brainsci12030365.

引用本文的文献

1
An acoustic model of speech dysprosody in patients with Parkinson's disease.帕金森病患者言语韵律障碍的声学模型。
Front Hum Neurosci. 2025 Apr 28;19:1566274. doi: 10.3389/fnhum.2025.1566274. eCollection 2025.
2
Cognitive Predictors of Perception and Adaption to Dysarthric Speech in Older Adults.老年人对构音障碍言语的感知与适应的认知预测因素
J Speech Lang Hear Res. 2025 Jul 29;68(7S):3507-3524. doi: 10.1044/2024_JSLHR-24-00345. Epub 2025 Jan 7.
10
Rate Modulation Abilities in Acquired Motor Speech Disorders.获得性运动性言语障碍的语速调节能力。
J Speech Lang Hear Res. 2023 Aug 17;66(8S):3194-3205. doi: 10.1044/2022_JSLHR-22-00286. Epub 2023 Feb 13.

本文引用的文献

4
Toward an acoustic typology of motor speech disorders.迈向运动性言语障碍的声学类型学
Clin Linguist Phon. 2003 Sep;17(6):427-45. doi: 10.1080/0269920031000086248.
10
Correlates of linguistic rhythm in the speech signal.语音信号中语言节奏的相关因素。
Cognition. 1999 Dec 17;73(3):265-92. doi: 10.1016/s0010-0277(99)00058-x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验