Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.
Biomicrofluidics. 2010 Jan 7;4(1):13202. doi: 10.1063/1.3279788.
An optoelectronic microdevice is set up to drive single microparticles and a maximum synchronous velocity (MS-velocity) spectrum method is proposed for quantifying the frequency-dependent behaviors of individual neutral microparticles from 40 kHz to 10 MHz. Dielectrophoretic behaviors of three types of microparticles are investigated under the optically induced nonuniform electric field. Different MS-velocity spectra for the three different particles are experimentally found. Numerical calculations for the MS-velocity spectra of polystyrene microparticles are performed. The spectrum of the MS-velocities for a specific particle is mainly determined by the particle inherent property and the electric characteristics of the device. Moreover the experimental and the numerical MS-velocity spectra are compared to be accordant. Based on the dielectrophoretic (DEP) behaviors of the particles under a nonuniform electric field, microparticles can be finely characterized or distinguished according to their distinct MS-velocity spectra.
建立了光电微器件来驱动单个微粒子,并提出了最大同步速度(MS-velocity)谱方法,用于从 40 kHz 到 10 MHz 量化单个中性微粒子的频率相关行为。在光诱导非均匀电场下研究了三种类型微粒子的介电泳行为。实验发现了三种不同粒子的不同 MS-velocity 谱。对聚苯乙烯微粒子的 MS-velocity 谱进行了数值计算。特定粒子的 MS-速度谱主要由粒子固有特性和器件的电特性决定。此外,实验和数值 MS-velocity 谱进行了比较,结果是一致的。基于非均匀电场下颗粒的介电泳(DEP)行为,可以根据其独特的 MS-velocity 谱对微粒子进行精细的特征或区分。