Suppr超能文献

一种使用介电泳进行连续流细胞分选的平衡方法。

An equilibrium method for continuous-flow cell sorting using dielectrophoresis.

作者信息

Vahey M D, Voldman J

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 36-824, Cambridge, Massachusetts 02139, USA.

出版信息

Anal Chem. 2008 May 1;80(9):3135-43. doi: 10.1021/ac7020568. Epub 2008 Mar 26.

Abstract

Separations represent a fundamental unit operation in biology and biotechnology. Commensurate with their importance is the diversity of methods that have been developed for performing them. One important class of separations are equilibrium gradient methods, wherein a medium with some type of spatial nonuniformity is combined with a force field to focus particles to equilibrium positions related to those particles' intrinsic properties. A second class of techniques that is nonequilibrium exploits labels to sort particles based upon their extrinsic properties. While equilibrium techniques such as iso-electric focusing (IEF) have become instrumental within analytical chemistry and proteomics, cell separations predominantly rely upon the second, label-based class of techniques, exemplified by fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS). To extend the equilibrium techniques available for separating cells, we demonstrate the first implementation of a new microfluidic equilibrium separation method, which we call isodielectric separation (IDS), for sorting cells based upon electrically distinguishable phenotypes. IDS is analogous to isoelectric focusing, except instead of separating amphoteric molecules in a pH gradient using electrophoresis, we separate cells and particles in an electrical conductivity gradient using dielectrophoresis. IDS leverages many of the advantages of microfluidics and equilibrium gradient separation methods to create a device that is continuous-flow, capable of parallel separations of multiple (>2) subpopulations from a heterogeneous background, and label-free. We demonstrate the separation of polystyrene beads based upon surface conductance as well as sorting nonviable from viable cells of the budding yeast Saccharomyces cerevisiae.

摘要

分离是生物学和生物技术中的一项基本单元操作。与它们的重要性相称的是为执行分离而开发的方法的多样性。一类重要的分离方法是平衡梯度法,其中具有某种空间不均匀性的介质与力场相结合,将颗粒聚焦到与这些颗粒固有特性相关的平衡位置。另一类非平衡技术利用标记物根据颗粒的外在特性对其进行分类。虽然等电聚焦(IEF)等平衡技术在分析化学和蛋白质组学中发挥了重要作用,但细胞分离主要依赖于第二类基于标记的技术,以荧光激活细胞分选(FACS)和磁激活细胞分选(MACS)为代表。为了扩展可用于分离细胞的平衡技术,我们展示了一种新的微流控平衡分离方法的首次应用,我们称之为等介电分离(IDS),用于根据电可区分的表型对细胞进行分选。IDS类似于等电聚焦,不同之处在于,我们不是使用电泳在pH梯度中分离两性分子,而是使用介电泳在电导率梯度中分离细胞和颗粒。IDS利用了微流控和平衡梯度分离方法的许多优点,创建了一种连续流动装置,能够从异质背景中并行分离多个(>2)亚群,且无需标记。我们展示了基于表面电导率对聚苯乙烯珠进行分离,以及对出芽酵母酿酒酵母的活细胞和死细胞进行分选。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验