Department of Internal Medicine, Rush Institute for Healthy Aging, Rush University Medical Center, 1645 W Jackson Blvd, Suite 675, Chicago, IL 60612, U.S.A.
Stat Med. 2010 Sep 20;29(21):2260-8. doi: 10.1002/sim.4010.
Specific age-related hypotheses are tested in population-based longitudinal studies. At specific time intervals, both the outcomes of interest and the time-varying covariates are measured. When participants are approached for follow-up, some participants do not provide data. Investigations may show that many have died before the time of follow-up whereas others refused to participate. Some of these non-participants do not provide data at later follow-ups. Few statistical methods for missing data distinguish between 'non-participation' and 'death' among study participants. The augmented inverse probability-weighted estimators are most commonly used in marginal structure models when data are missing at random. Treating non-participation and death as the same, however, may lead to biased estimates and invalid inferences. To overcome this limitation, a multiple inverse probability-weighted approach is presented to account for two types of missing data, non-participation and death, when using a marginal mean model. Under certain conditions, the multiple weighted estimators are consistent and asymptotically normal. Simulation studies will be used to study the finite sample efficiency of the multiple weighted estimators. The proposed method will be applied to study the risk factors associated with the cognitive decline among the aging adults, using data from the Chicago Health and Aging Project (CHAP).
基于人群的纵向研究中测试了特定的与年龄相关的假设。在特定的时间间隔内,同时测量感兴趣的结果和时变协变量。当参与者被要求进行随访时,有些参与者没有提供数据。研究可能表明,许多人在随访前已经死亡,而其他人则拒绝参与。其中一些非参与者在以后的随访中也没有提供数据。很少有用于缺失数据的统计方法可以区分研究参与者中的“不参与”和“死亡”。当数据随机缺失时,增强逆概率加权估计器最常用于边缘结构模型。然而,将不参与和死亡视为相同的情况可能会导致有偏差的估计和无效的推断。为了克服这一限制,当使用边缘均值模型时,提出了一种多重逆概率加权方法来处理两种类型的缺失数据,即不参与和死亡。在某些条件下,多重加权估计量是一致的和渐近正态的。将进行模拟研究来研究多重加权估计量的有限样本效率。将该方法应用于使用来自芝加哥健康与老龄化项目 (CHAP) 的数据研究与老年人认知能力下降相关的风险因素。