表皮生长因子受体 vIII 抗体偶联氧化铁纳米颗粒用于磁共振成像引导下的对流增强递送和胶质母细胞瘤的靶向治疗。

EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma.

机构信息

Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

出版信息

Cancer Res. 2010 Aug 1;70(15):6303-12. doi: 10.1158/0008-5472.CAN-10-1022. Epub 2010 Jul 20.

Abstract

The magnetic nanoparticle has emerged as a potential multifunctional clinical tool that can provide cancer cell detection by magnetic resonance imaging (MRI) contrast enhancement as well as targeted cancer cell therapy. A major barrier in the use of nanotechnology for brain tumor applications is the difficulty in delivering nanoparticles to intracranial tumors. Iron oxide nanoparticles (IONP; 10 nm in core size) conjugated to a purified antibody that selectively binds to the epidermal growth factor receptor (EGFR) deletion mutant (EGFRvIII) present on human glioblastoma multiforme (GBM) cells were used for therapeutic targeting and MRI contrast enhancement of experimental glioblastoma, both in vitro and in vivo, after convection-enhanced delivery (CED). A significant decrease in glioblastoma cell survival was observed after nanoparticle treatment and no toxicity was observed with treatment of human astrocytes (P < 0.001). Lower EGFR phosphorylation was found in glioblastoma cells after EGFRvIIIAb-IONP treatment. Apoptosis was determined to be the mode of cell death after treatment of GBM cells and glioblastoma stem cell-containing neurospheres with EGFRvIIIAb-IONPs. MRI-guided CED of EGFRvIIIAb-IONPs allowed for the initial distribution of magnetic nanoparticles within or adjacent to intracranial human xenograft tumors and continued dispersion days later. A significant increase in animal survival was found after CED of magnetic nanoparticles (P < 0.01) in mice implanted with highly tumorigenic glioblastoma xenografts (U87DeltaEGFRvIII). IONPs conjugated to an antibody specific to the EGFRvIII deletion mutant constitutively expressed by human glioblastoma tumors can provide selective MRI contrast enhancement of tumor cells and targeted therapy of infiltrative glioblastoma cells after CED.

摘要

磁性纳米颗粒已成为一种潜在的多功能临床工具,可通过磁共振成像 (MRI) 对比增强提供癌细胞检测,并进行靶向癌细胞治疗。将纳米技术应用于脑肿瘤的主要障碍是难以将纳米颗粒递送至颅内肿瘤。将氧化铁纳米颗粒 (IONP;核心尺寸为 10nm) 与针对人类胶质母细胞瘤多形性 (GBM) 细胞上表达的表皮生长因子受体 (EGFR) 缺失突变 (EGFRvIII) 的纯化抗体偶联,用于治疗靶向和 MRI 对比增强实验性胶质母细胞瘤,无论是在体外还是体内,均在对流增强递送 (CED) 后进行。在用纳米颗粒处理后,观察到胶质母细胞瘤细胞存活率显著下降,而用人类星形胶质细胞处理时未观察到毒性 (P < 0.001)。在用 EGFRvIIIAb-IONP 处理后,发现胶质母细胞瘤细胞中的 EGFR 磷酸化水平降低。在用 EGFRvIIIAb-IONP 处理 GBM 细胞和含有胶质母细胞瘤干细胞的神经球后,确定细胞死亡的方式为细胞凋亡。在 MRI 引导下进行 CED 的 EGFRvIIIAb-IONP 允许将磁性纳米颗粒初始分布在颅内人异种移植肿瘤内或附近,并在数天之后继续分散。在用高致瘤性胶质母细胞瘤异种移植物 (U87DeltaEGFRvIII) 植入的小鼠中,CED 后发现动物存活率显著提高 (P < 0.01)。与针对人类胶质母细胞瘤肿瘤中持续表达的 EGFRvIII 缺失突变体的抗体偶联的 IONP 可提供肿瘤细胞的选择性 MRI 对比增强,并在 CED 后对浸润性胶质母细胞瘤细胞进行靶向治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索