Bouras Alexandros, Kaluzova Milota, Hadjipanayis Costas G
Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
J Neurooncol. 2015 Aug;124(1):13-22. doi: 10.1007/s11060-015-1807-0. Epub 2015 May 17.
The epidermal growth factor receptor deletion variant EGFRvIII is known to be expressed in a subset of patients with glioblastoma (GBM) tumors that enhances tumorigenicity and also accounts for radiation and chemotherapy resistance. Targeting the EGFRvIII deletion mutant may lead to improved GBM therapy and better patient prognosis. Multifunctional magnetic nanoparticles serve as a potential clinical tool that can provide cancer cell targeted drug delivery, imaging, and therapy. Our previous studies have shown that an EGFRvIII-specific antibody and cetuximab (an EGFR- and EGFRvIII-specific antibody), when bioconjugated to IONPs (EGFRvIII-IONPs or cetuximab-IONPs respectively), can simultaneously provide sensitive cancer cell detection by magnetic resonance imaging (MRI) and targeted therapy of experimental GBM. In this study, we investigated whether cetuximab-IONPs can additionally allow for the radiosensitivity enhancement of GBM. Cetuximab-IONPs were used in combination with single (10 Gy × 1) or multiple fractions (10 Gy × 2) of ionizing radiation (IR) for radiosensitization of EGFRvIII-overexpressing human GBM cells in vitro and in vivo after convection-enhanced delivery (CED). A significant GBM antitumor effect was observed in vitro after treatment with cetuximab-IONPs and subsequent single or fractionated IR. A significant increase in overall survival of nude mice implanted with human GBM xenografts was found after treatment by cetuximab-IONP CED and subsequent fractionated IR. Increased DNA double strands breaks (DSBs), as well as increased reactive oxygen species (ROS) formation, were felt to represent the mediators of the observed radiosensitization effect with the combination therapy of IR and cetuximab-IONPs treatment.
已知表皮生长因子受体缺失变体EGFRvIII在胶质母细胞瘤(GBM)肿瘤的一部分患者中表达,它会增强肿瘤发生能力,也是放疗和化疗耐药的原因。靶向EGFRvIII缺失突变体可能会改善GBM治疗效果并提高患者预后。多功能磁性纳米颗粒是一种潜在的临床工具,可用于癌细胞靶向给药、成像和治疗。我们之前的研究表明,一种EGFRvIII特异性抗体和西妥昔单抗(一种EGFR和EGFRvIII特异性抗体),当与离子纳米颗粒生物偶联时(分别为EGFRvIII-IONPs或西妥昔单抗-IONPs),可通过磁共振成像(MRI)同时实现对癌细胞的灵敏检测以及对实验性GBM的靶向治疗。在本研究中,我们调查了西妥昔单抗-IONPs是否还能增强GBM的放射敏感性。西妥昔单抗-IONPs与单次(10 Gy×1)或多次分割(10 Gy×2)的电离辐射(IR)联合使用,用于在对流增强递送(CED)后对体外和体内过表达EGFRvIII的人GBM细胞进行放射增敏。在用西妥昔单抗-IONPs处理并随后进行单次或分割IR处理后,在体外观察到了显著的GBM抗肿瘤效果。在用西妥昔单抗-IONP CED处理并随后进行分割IR处理后,发现植入人GBM异种移植物的裸鼠的总生存期显著延长。DNA双链断裂(DSB)增加以及活性氧(ROS)形成增加,被认为是IR与西妥昔单抗-IONPs联合治疗所观察到的放射增敏效应的介导因素。