Suppr超能文献

下丘脑长链脂肪酸输注对肝葡萄糖生成抑制的差异作用。

Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production.

机构信息

Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

出版信息

Am J Physiol Endocrinol Metab. 2010 Oct;299(4):E633-9. doi: 10.1152/ajpendo.00190.2010. Epub 2010 Jul 20.

Abstract

Our objective was to investigate whether the direct bilateral infusion of the monounsaturated fatty acid (MUFA) oleic acid (OA) within the mediobasal hypothalamus (MBH) is sufficient to reproduce the effect of administration of OA (30 nmol) in the third cerebral ventricle, which inhibits glucose production (GP) in rats. We used the pancreatic basal insulin clamp technique (plasma insulin ∼20 mU/ml) in combination with tracer dilution methodology to compare the effect of MBH OA on GP to that of a saturated fatty acid (SFA), palmitic acid (PA), and a polyunsaturated fatty acid (PUFA), linoleic acid (LA). The MBH infusion of 200 but not 40 pmol of OA was sufficient to markedly inhibit GP (by 61% from 12.6 ± 0.6 to 5.1 ± 1.6 mg·kg(-1)·min(-1)) such that exogenous glucose had to be infused at the rate of 6.0 ± 1.2 mg·kg(-1)·min(-1) to prevent hypoglycemia. MBH infusion of PA also caused a significant decrease in GP, but only at a total dose of 4 nmol (GP 5.8 ± 1.6 mg·kg(-1)·min(-1)). Finally, MBH LA at a total dose of 0.2 and 4 nmol failed to modify GP compared with rats receiving MBH vehicle. Increased availability of OA within the MBH is sufficient to markedly inhibit GP. LA does not share the effect of OA, whereas PA can reproduce the potent effect of OA on GP, but only at a higher dose. It remains to be determined whether SFAs need to be converted to MUFAs to exert this effect or whether they activate a separate signaling pathway to inhibit GP.

摘要

我们的目的是研究在中脑基底部(MBH)内直接输注单不饱和脂肪酸(MUFA)油酸(OA)是否足以复制 OA(30 nmol)在第三脑室内给药的作用,后者抑制大鼠的葡萄糖生成(GP)。我们使用胰腺基础胰岛素钳夹技术(血浆胰岛素约 20 mU/ml)结合示踪剂稀释方法,比较了 MBH OA 对 GP 的作用与饱和脂肪酸(SFA)棕榈酸(PA)和多不饱和脂肪酸(PUFA)亚油酸(LA)的作用。MBH 输注 200 而不是 40 pmol OA 足以显著抑制 GP(从 12.6 ± 0.6 到 5.1 ± 1.6 mg·kg(-1)·min(-1),抑制率为 61%),以至于必须以 6.0 ± 1.2 mg·kg(-1)·min(-1)的速度输注外源性葡萄糖以防止低血糖。MBH 输注 PA 也导致 GP 显著下降,但仅在总剂量为 4 nmol 时(GP 5.8 ± 1.6 mg·kg(-1)·min(-1))。最后,MBH LA 的总剂量为 0.2 和 4 nmol 与接受 MBH 载体的大鼠相比,未能改变 GP。OA 在 MBH 中的可用性增加足以显著抑制 GP。LA 不具有 OA 的作用,而 PA 可以复制 OA 对 GP 的有效作用,但仅在更高剂量下。仍需确定 SFA 是否需要转化为 MUFA 以发挥此作用,或者它们是否激活了单独的信号通路来抑制 GP。

相似文献

1
Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production.
Am J Physiol Endocrinol Metab. 2010 Oct;299(4):E633-9. doi: 10.1152/ajpendo.00190.2010. Epub 2010 Jul 20.
2
Hypothalamic responses to long-chain fatty acids are nutritionally regulated.
J Biol Chem. 2004 Jul 23;279(30):31139-48. doi: 10.1074/jbc.M400458200. Epub 2004 May 19.
3
Mediobasal hypothalamic SIRT1 is essential for resveratrol's effects on insulin action in rats.
Diabetes. 2011 Nov;60(11):2691-700. doi: 10.2337/db10-0987. Epub 2011 Sep 6.
5
Hypothalamic glucagon signaling inhibits hepatic glucose production.
Nat Med. 2013 Jun;19(6):766-72. doi: 10.1038/nm.3115. Epub 2013 May 19.
6
Oleic Acid and Eicosapentaenoic Acid Reverse Palmitic Acid-induced Insulin Resistance in Human HepG2 Cells via the Reactive Oxygen Species/JUN Pathway.
Genomics Proteomics Bioinformatics. 2021 Oct;19(5):754-771. doi: 10.1016/j.gpb.2019.06.005. Epub 2021 Feb 23.
7
Effects of central administration of distinct fatty acids on hypothalamic neuropeptide expression and energy metabolism.
Int J Obes (Lond). 2011 Mar;35(3):336-44. doi: 10.1038/ijo.2010.159. Epub 2010 Aug 17.
9
Effects of different fatty acids on BRL3A rat liver cell damage.
J Cell Physiol. 2020 Sep;235(9):6246-6256. doi: 10.1002/jcp.29553. Epub 2020 Feb 3.
10
Hypothalamic leucine metabolism regulates liver glucose production.
Diabetes. 2012 Jan;61(1):85-93. doi: 10.2337/db11-0857.

引用本文的文献

1
Fatty Acid Sensing in the Gastrointestinal Tract of Rainbow Trout: Different to Mammalian Model?
Int J Mol Sci. 2023 Feb 21;24(5):4275. doi: 10.3390/ijms24054275.
2
Reduced Albumin Concentration Predicts Weight Gain and Higher Energy Intake in Humans.
Front Endocrinol (Lausanne). 2021 Mar 11;12:642568. doi: 10.3389/fendo.2021.642568. eCollection 2021.
3
Ginsenoside Rb1 improves leptin sensitivity in the prefrontal cortex in obese mice.
CNS Neurosci Ther. 2018 Feb;24(2):98-107. doi: 10.1111/cns.12776. Epub 2017 Nov 11.
4
Oleic Acid in the Ventral Tegmental Area Inhibits Feeding, Food Reward, and Dopamine Tone.
Neuropsychopharmacology. 2018 Feb;43(3):607-616. doi: 10.1038/npp.2017.203. Epub 2017 Aug 31.
5
Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake.
Front Neurosci. 2017 Jun 26;11:354. doi: 10.3389/fnins.2017.00354. eCollection 2017.
6
Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism.
Front Endocrinol (Lausanne). 2017 Apr 4;8:60. doi: 10.3389/fendo.2017.00060. eCollection 2017.
7
Nutrient Sensing Systems in Fish: Impact on Food Intake Regulation and Energy Homeostasis.
Front Neurosci. 2017 Jan 5;10:603. doi: 10.3389/fnins.2016.00603. eCollection 2016.
8
Knockdown of Neuropeptide Y in the Dorsomedial Hypothalamus Promotes Hepatic Insulin Sensitivity in Male Rats.
Endocrinology. 2016 Dec;157(12):4842-4852. doi: 10.1210/en.2016-1662. Epub 2016 Nov 2.
9
Physiology of Food Intake Control in Children.
Adv Nutr. 2016 Jan 15;7(1):232S-240S. doi: 10.3945/an.115.009357. Print 2016 Jan.
10
Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function.
Cell Rep. 2014 Dec 24;9(6):2124-38. doi: 10.1016/j.celrep.2014.11.018. Epub 2014 Dec 11.

本文引用的文献

1
Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing.
Am J Physiol Regul Integr Comp Physiol. 2009 Sep;297(3):R655-64. doi: 10.1152/ajpregu.00223.2009. Epub 2009 Jun 17.
2
Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets.
Nat Rev Drug Discov. 2008 Jun;7(6):489-503. doi: 10.1038/nrd2589.
3
Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, and eicosapentaenoic acid.
Mol Nutr Food Res. 2008 Jun;52(6):631-45. doi: 10.1002/mnfr.200700399.
4
Dietary conjugated linoleic acid increases PPAR gamma gene expression in adipose tissue of obese rat, and improves insulin resistance.
Growth Horm IGF Res. 2008 Oct;18(5):361-368. doi: 10.1016/j.ghir.2008.01.001. Epub 2008 Mar 4.
5
Fatty acids and insulin sensitivity.
Curr Opin Clin Nutr Metab Care. 2008 Mar;11(2):100-5. doi: 10.1097/MCO.0b013e3282f52708.
6
Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells.
J Biol Chem. 2008 Apr 25;283(17):11107-16. doi: 10.1074/jbc.M708700200. Epub 2008 Feb 14.
7
Effects of different free fatty acids on insulin resistance in rats.
Hepatobiliary Pancreat Dis Int. 2008 Feb;7(1):91-6.
8
Could the quality of dietary fat, and not just its quantity, be related to risk of obesity?
Obesity (Silver Spring). 2008 Jan;16(1):7-15. doi: 10.1038/oby.2007.14.
9
Peroxisome proliferator-activated receptors and the metabolic syndrome.
Physiol Behav. 2008 May 23;94(2):187-97. doi: 10.1016/j.physbeh.2007.11.053. Epub 2007 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验