Suppr超能文献

相似文献

1
Fatty Acid Sensing in the Gastrointestinal Tract of Rainbow Trout: Different to Mammalian Model?
Int J Mol Sci. 2023 Feb 21;24(5):4275. doi: 10.3390/ijms24054275.
2
Central administration of oleate or octanoate activates hypothalamic fatty acid sensing and inhibits food intake in rainbow trout.
Physiol Behav. 2014 Apr 22;129:272-9. doi: 10.1016/j.physbeh.2014.02.061. Epub 2014 Mar 11.
3
Evidence of a metabolic fatty acid-sensing system in the hypothalamus and Brockmann bodies of rainbow trout: implications in food intake regulation.
Am J Physiol Regul Integr Comp Physiol. 2012 Jun;302(11):R1340-50. doi: 10.1152/ajpregu.00070.2012. Epub 2012 Apr 11.
5
In vitro response of putative fatty acid-sensing systems in rainbow trout liver to increased levels of oleate or octanoate.
Comp Biochem Physiol A Mol Integr Physiol. 2013 Jun;165(2):288-94. doi: 10.1016/j.cbpa.2013.03.024. Epub 2013 Mar 27.
6
Hypothalamic fatty acid sensing in Senegalese sole (Solea senegalensis): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids.
Am J Physiol Regul Integr Comp Physiol. 2015 Dec 15;309(12):R1521-31. doi: 10.1152/ajpregu.00386.2015. Epub 2015 Oct 14.
8
Dietary lipid sensing through fatty acid oxidation and chylomicron formation in the gastrointestinal tract of rainbow trout.
Comp Biochem Physiol A Mol Integr Physiol. 2024 Aug;294:111638. doi: 10.1016/j.cbpa.2024.111638. Epub 2024 Apr 22.
9
Effects of insulin treatment on the response to oleate and octanoate of food intake and fatty acid-sensing systems in rainbow trout.
Domest Anim Endocrinol. 2015 Oct;53:124-35. doi: 10.1016/j.domaniend.2015.06.004. Epub 2015 Jul 2.
10
Effects of resveratrol and genistein on growth, nutrient utilization and fatty acid composition of rainbow trout.
Animal. 2019 May;13(5):933-940. doi: 10.1017/S1751731118002458. Epub 2018 Oct 10.

本文引用的文献

1
Molecular characterization and functional exploration of GPR84 in Chinese Giant Salamander (Andrias davidianus).
Dev Comp Immunol. 2022 Dec;137:104526. doi: 10.1016/j.dci.2022.104526. Epub 2022 Sep 1.
3
The gut-brain axis in vertebrates: implications for food intake regulation.
J Exp Biol. 2021 Jan 7;224(Pt 1):jeb231571. doi: 10.1242/jeb.231571.
4
Gut-to-brain signals in feeding control.
Am J Physiol Endocrinol Metab. 2021 Feb 1;320(2):E326-E332. doi: 10.1152/ajpendo.00388.2020. Epub 2020 Dec 7.
5
20 Years an Orphan: Is GPR84 a Plausible Medium-Chain Fatty Acid-Sensing Receptor?
DNA Cell Biol. 2020 Nov;39(11):1926-1937. doi: 10.1089/dna.2020.5846. Epub 2020 Oct 1.
6
Natural biased signaling of hydroxycarboxylic acid receptor 3 and G protein-coupled receptor 84.
Cell Commun Signal. 2020 Feb 26;18(1):31. doi: 10.1186/s12964-020-0516-2.
7
Free Fatty Acid Receptors in Health and Disease.
Physiol Rev. 2020 Jan 1;100(1):171-210. doi: 10.1152/physrev.00041.2018. Epub 2019 Sep 5.
8
Metabolic control via nutrient-sensing mechanisms: role of taste receptors and the gut-brain neuroendocrine axis.
Am J Physiol Endocrinol Metab. 2019 Oct 1;317(4):E559-E572. doi: 10.1152/ajpendo.00036.2019. Epub 2019 Jul 16.
10
Activation of the Immune-Metabolic Receptor GPR84 Enhances Inflammation and Phagocytosis in Macrophages.
Front Immunol. 2018 Jun 20;9:1419. doi: 10.3389/fimmu.2018.01419. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验