Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
Nanoscale. 2010 Jul;2(7):1149-54. doi: 10.1039/c0nr00100g. Epub 2010 May 25.
In this study we report the synthesis of BiFeO(3) nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3) and Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3) samples show that the aspect ratios of both the double doped samples have reduced considerably, while retaining the crystallinity of the particles. BiFeO(3) nanorods show a weak ferromagnetic order at room temperature, which is quite different from the linear M-H relationship reported for bulk BiFeO(3). The saturation magnetization of these BiFeO(3) nanostructures has been found to increase on doping with various metal ions (Ba(2+), Ca(2+), Mn(2+), Cr(3+)), reaching a maximum value of 1.35 emu g(-1) for the Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3) nanostructures. However, saturation of electric polarization was observed only in case of the Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3) nanostructures.
在这项研究中,我们使用超声化学技术报告了 BiFeO(3)纳米棒的合成。纳米棒的直径为 20-50nm,长度为 100-500nm,纵横比在 5-10 范围内。然而,掺杂后,Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3)和 Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3)样品的 TEM 图像表明,两个双掺杂样品的纵横比都大大降低,同时保持了颗粒的结晶度。BiFeO(3)纳米棒在室温下表现出弱铁磁性有序,这与报道的块状 BiFeO(3)的线性 M-H 关系有很大不同。这些 BiFeO(3)纳米结构的饱和磁化强度被发现随着各种金属离子(Ba(2+)、Ca(2+)、Mn(2+)、Cr(3+))的掺杂而增加,对于 Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3)纳米结构,达到了 1.35emu g(-1)的最大值。然而,仅在 Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3)纳米结构中观察到电极化的饱和。