Iqbal M Abdullah, Tariq Ayesha, Zaheer Ayesha, Gul Sundus, Ali S Irfan, Iqbal Muhammad Z, Akinwande Deji, Rizwan Syed
Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Energy and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
ACS Omega. 2019 Nov 25;4(24):20530-20539. doi: 10.1021/acsomega.9b02359. eCollection 2019 Dec 10.
The current environmental and potable water crisis requires technological advancement to tackle the issues caused by different organic pollutants. Herein, we report the degradation of organic pollutants such as Congo Red and acetophenone from aqueous media using visible light irradiation. To harvest the solar energy for photocatalysis, we fabricated a nanohybrid system composed of bismuth ferrite nanoparticles with two-dimensional (2D) MXene sheets, namely, the BiFeO (BFO)/TiC (MXene) nanohybrid, for enhanced photocatalytic activity. The hybrid BFO/MXene is fabricated using a simple and low-cost double-solvent solvothermal method. The SEM and TEM images showed that the BFO nanoparticles are attached onto the surface of 2D MXene sheets. The photocatalytic degradation achieved by the hybrid is found to be 100% in 42 min for the organic dye (Congo Red) and 100% for the colorless aqueous pollutant (acetophenone) in 150 min. The BFO/MXene hybrid system exhibited a large surface area of 147 m g measured via the Brunauer-Emmett-Teller sorption-desorption technique, which is found to be the largest among all BFO nanoparticles and derivatives. The photoluminescence spectra indicate a low electron-hole recombination rate. Fast and efficient degradation of organic molecules is caused by two factors: larger surface area and lower electron-hole recombination rate, which makes the BFO/MXene nanohybrid a highly efficient photocatalyst and a promising candidate for many future applications.
当前的环境和饮用水危机需要技术进步来解决由不同有机污染物引起的问题。在此,我们报道了利用可见光照射从水性介质中降解刚果红和苯乙酮等有机污染物。为了收集太阳能用于光催化,我们制备了一种由二维(2D)MXene片层与铋铁氧体纳米颗粒组成的纳米杂化体系,即BiFeO(BFO)/TiC(MXene)纳米杂化物,以增强光催化活性。采用简单且低成本的双溶剂溶剂热法制备了BFO/MXene杂化物。扫描电子显微镜(SEM)和透射电子显微镜(TEM)图像显示,BFO纳米颗粒附着在二维MXene片层的表面。对于有机染料(刚果红),该杂化物在42分钟内实现了100%的光催化降解;对于无色水性污染物(苯乙酮),在150分钟内实现了100%的降解。通过布鲁诺尔-埃米特-泰勒(Brunauer-Emmett-Teller)吸附-脱附技术测得,BFO/MXene杂化体系的比表面积为147 m²/g,这是所有BFO纳米颗粒及其衍生物中最大的。光致发光光谱表明电子-空穴复合率较低。有机分子的快速高效降解由两个因素导致:较大的表面积和较低的电子-空穴复合率,这使得BFO/MXene纳米杂化物成为一种高效的光催化剂,并且是未来许多应用的有前景的候选材料。