Suppr超能文献

体外细胞毒性测量在QSAR方法中用于预测酸的皮肤腐蚀性潜力。

The use of in vitro cytotoxicity measurements in QSAR methods for the prediction of the skin corrosivity potential of acids.

作者信息

Barratt M D, Dixit M B, Jones P A

机构信息

Unilever Environmental Safety Laboratory, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK.

出版信息

Toxicol In Vitro. 1996 Jun;10(3):283-90. doi: 10.1016/0887-2333(96)00014-8.

Abstract

Quantitative structure-activity relationships (QSAR) methods have been derived that relate the severity of skin corrosivity (designated by the EC risk phrases R34 and R35) of acids to parameters that model their skin permeability and cytotoxicity. Skin permeability was modelled by log(octanol/water partition coefficient), molecular volume and melting point, while the cytotoxicity of the acids was accounted for by their pK(a), values and the in vitro cytotoxicity of their sodium salts towards Swiss mouse embryo 3T3 cells. The dataset was analysed using principal components and neural network analysis. The classification predictions from both QSAR methods were in agreement with those in the training set for 26 of the 27 acids. The methods provide useful procedures for the prediction of the skin corrosivity potentials of severely corrosive acids, which avoid the use of experimental animals and demonstrate the value of in vitro cytotoxicity parameters as inputs for QSAR analysis.

摘要

已经推导出定量构效关系(QSAR)方法,该方法将酸的皮肤腐蚀性严重程度(由欧盟风险术语R34和R35指定)与模拟其皮肤渗透性和细胞毒性的参数相关联。通过log(辛醇/水分配系数)、分子体积和熔点对皮肤渗透性进行建模,而酸的细胞毒性则由其pK(a)值及其钠盐对瑞士小鼠胚胎3T3细胞的体外细胞毒性来体现。使用主成分分析和神经网络分析对数据集进行分析。两种QSAR方法的分类预测与27种酸中的26种在训练集中的预测结果一致。这些方法为预测强腐蚀性酸的皮肤腐蚀潜力提供了有用的程序,避免了使用实验动物,并证明了体外细胞毒性参数作为QSAR分析输入的价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验