Suppr超能文献

随机信息的神经网络分析:在神经生物学数据中的应用。

Neural network analyses of stochastic information: application to neurobiological data.

作者信息

Shah S, Faller W E, Luttges M W

机构信息

Department of Electrical and Aerospace Engineering Sciences, University of Colorado, Boulder 80309-0429.

出版信息

Biomed Sci Instrum. 1991;27:231-8.

PMID:2065160
Abstract

Simultaneous recordings from over 50 neural cells were obtained from the dragonfly ganglia. To explore the biological information processing strategies reflected therein, data analysis methods were designed for use with artificial neural networks (ANN). Most methods are degraded by different cell spike trains that vary in mean firing frequencies by well over an order of magnitude. Based on underlying cell physiology, the occurrence of each spike is likely to be a stochastic function. To overcome such degradation problems in ANN use, a gaussian spike train representation was synthesized for each cell using raw data. This representation retained the exact spiking times and provided a biologically plausible probabilistic value for the time of occurrence for each spike. A 3-layer, feed-forward, ANN was trained on these data using a gradient descent learning algorithm. The task was to predict the neural activity at time (t + 1) given the neural activity at time (t). Following training, the network sum-squared prediction error was less than 0.01. Further, the temporal reproduction of the neural firing patterns was corroborated. The results indicated that the ANN could accurately reproduce the neural firing patterns in both the spatial and temporal domain using the stochastic spike train data. Encoding parameters for the spike trains using synthesized gaussian representations were optimized. The "lesion" studies were performed to determine the contribution of each cell to ANN predictions. The capability to "fine tune" both the information representation of spike trains and the ANN architecture provides significant advantages in the analysis of biological information processing by neural cells.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

从蜻蜓神经节获取了50多个神经细胞的同步记录。为了探索其中反映的生物信息处理策略,设计了用于人工神经网络(ANN)的数据分析方法。大多数方法会因不同细胞的脉冲序列而退化,这些脉冲序列的平均发放频率差异超过一个数量级。基于潜在的细胞生理学,每个脉冲的出现可能是一个随机函数。为了克服ANN使用中的此类退化问题,利用原始数据为每个细胞合成了高斯脉冲序列表示。这种表示保留了精确的脉冲发放时间,并为每个脉冲的出现时间提供了生物学上合理的概率值。使用梯度下降学习算法在这些数据上训练了一个三层前馈ANN。任务是根据时间t的神经活动预测时间(t + 1)的神经活动。训练后,网络的均方预测误差小于0.01。此外,神经放电模式的时间再现得到了证实。结果表明,ANN可以使用随机脉冲序列数据在空间和时间域中准确再现神经放电模式。使用合成高斯表示对脉冲序列的编码参数进行了优化。进行了“损伤”研究以确定每个细胞对ANN预测的贡献。对脉冲序列的信息表示和ANN架构进行“微调”的能力在神经细胞生物信息处理分析中具有显著优势。(摘要截断于250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验