Suppr超能文献

负膜曲率作为一种细菌蛋白亚细胞定位的线索。

Negative membrane curvature as a cue for subcellular localization of a bacterial protein.

作者信息

Ramamurthi Kumaran S, Losick Richard

机构信息

Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13541-5. doi: 10.1073/pnas.0906851106. Epub 2009 Jul 28.

Abstract

Bacterial proteins often localize to distinct sites within the cell, but the primary cues that dictate localization are largely unknown. Recent evidence has shown that positive membrane curvature can serve as a cue for localization of a peripheral membrane protein. Here we report that localization of the peripheral membrane protein DivIVA is determined in whole or in part by recognition of negative membrane curvature and that regions of the protein near the N and C terminus are important for localization. DivIVA, which is a cell division protein in Bacillus subtilis, localizes principally as a ring at nascent septa and secondarily to the less negatively curved, inside surface of the hemispherical poles of the cell. When cytokinesis is prevented, DivIVA redistributes itself to, and becomes markedly enriched at, the poles. When the rod-shaped cells are converted into spheres (protoplasts) by treatment with lysozyme, DivIVA adopts a largely uniform distribution around the cell. Recognition of membrane curvature by peripheral membrane proteins could be a general strategy for protein localization in bacteria.

摘要

细菌蛋白常常定位于细胞内不同的位点,但决定其定位的主要线索在很大程度上尚不清楚。最近的证据表明,正的膜曲率可作为外周膜蛋白定位的一个线索。在此我们报告,外周膜蛋白DivIVA的定位全部或部分由对负膜曲率的识别所决定,并且该蛋白靠近N端和C端的区域对定位很重要。DivIVA是枯草芽孢杆菌中的一种细胞分裂蛋白,主要定位于新生隔膜处形成一个环,其次定位于细胞半球形极的负曲率较小的内表面。当胞质分裂被阻止时,DivIVA会重新分布到细胞极并在那里显著富集。当用溶菌酶处理将杆状细胞转化为球形(原生质体)时,DivIVA在细胞周围呈现大致均匀的分布。外周膜蛋白对膜曲率的识别可能是细菌中蛋白定位的一种普遍策略。

相似文献

1
Negative membrane curvature as a cue for subcellular localization of a bacterial protein.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13541-5. doi: 10.1073/pnas.0906851106. Epub 2009 Jul 28.
3
Localisation of DivIVA by targeting to negatively curved membranes.
EMBO J. 2009 Aug 5;28(15):2272-82. doi: 10.1038/emboj.2009.129. Epub 2009 May 28.
4
6
Protein-protein interaction domains of Bacillus subtilis DivIVA.
J Bacteriol. 2013 Mar;195(5):1012-21. doi: 10.1128/JB.02171-12. Epub 2012 Dec 21.
8
DivIVA uses an N-terminal conserved region and two coiled-coil domains to localize and sustain the polar growth in Corynebacterium glutamicum.
FEMS Microbiol Lett. 2009 Aug;297(1):110-6. doi: 10.1111/j.1574-6968.2009.01679.x. Epub 2009 Jun 5.
9
Features critical for membrane binding revealed by DivIVA crystal structure.
EMBO J. 2010 Jun 16;29(12):1988-2001. doi: 10.1038/emboj.2010.99. Epub 2010 May 25.
10
Cardiolipin-Containing Lipid Membranes Attract the Bacterial Cell Division Protein DivIVA.
Int J Mol Sci. 2021 Aug 3;22(15):8350. doi: 10.3390/ijms22158350.

引用本文的文献

1
2
Polymerization and flanking domains of the bactofilin BacA collectively regulate stalk formation in Asticcacaulis biprosthecum.
PLoS Genet. 2025 Aug 13;21(8):e1011542. doi: 10.1371/journal.pgen.1011542. eCollection 2025 Aug.
3
SpoIIE drives asymmetric cell division in by sequential modulation of the cytokinesis machinery.
bioRxiv. 2025 Jun 10:2025.06.09.658746. doi: 10.1101/2025.06.09.658746.
4
Staphylococcus aureus as an emerging model to study bacterial cell division.
J Biol Chem. 2025 Jun 6;301(7):110343. doi: 10.1016/j.jbc.2025.110343.
5
How do spherical bacteria regulate cell division?
Biochem Soc Trans. 2025 Apr 17;53(2):447-60. doi: 10.1042/BST20240956.
6
Exploration and analytical techniques for membrane curvature-sensing proteins in bacteria.
J Bacteriol. 2025 Apr 17;207(4):e0048224. doi: 10.1128/jb.00482-24. Epub 2025 Mar 26.
7
Chromosome segregation dynamics during the cell cycle of .
bioRxiv. 2025 Feb 19:2025.02.18.638847. doi: 10.1101/2025.02.18.638847.
8
PcdA promotes orthogonal division plane selection in Staphylococcus aureus.
Nat Microbiol. 2024 Nov;9(11):2997-3012. doi: 10.1038/s41564-024-01821-8. Epub 2024 Oct 28.
9
Polymer dynamics of Alp7A reveals how two critical concentrations govern assembly of dynamically unstable actin-like proteins.
Mol Biol Cell. 2024 Nov 1;35(11):ar145. doi: 10.1091/mbc.E23-11-0440. Epub 2024 Sep 25.
10
Biomolecular condensates as stress sensors and modulators of bacterial signaling.
PLoS Pathog. 2024 Aug 15;20(8):e1012413. doi: 10.1371/journal.ppat.1012413. eCollection 2024 Aug.

本文引用的文献

1
Localisation of DivIVA by targeting to negatively curved membranes.
EMBO J. 2009 Aug 5;28(15):2272-82. doi: 10.1038/emboj.2009.129. Epub 2009 May 28.
2
The conserved sporulation protein YneE inhibits DNA replication in Bacillus subtilis.
J Bacteriol. 2009 Jun;191(11):3736-9. doi: 10.1128/JB.00216-09. Epub 2009 Mar 27.
3
Geometric cue for protein localization in a bacterium.
Science. 2009 Mar 6;323(5919):1354-7. doi: 10.1126/science.1169218.
4
A novel component of the division-site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD.
Mol Microbiol. 2008 Dec;70(6):1556-69. doi: 10.1111/j.1365-2958.2008.06501.x. Epub 2008 Oct 23.
5
MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis.
Mol Microbiol. 2008 Dec;70(5):1166-79. doi: 10.1111/j.1365-2958.2008.06469.x. Epub 2008 Oct 2.
7
A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole.
Cell. 2008 Sep 19;134(6):945-55. doi: 10.1016/j.cell.2008.07.015.
8
Peptide inhibitor of cytokinesis during sporulation in Bacillus subtilis.
Mol Microbiol. 2008 May;68(3):588-99. doi: 10.1111/j.1365-2958.2008.06173.x. Epub 2008 Feb 19.
9
Structure, assembly, and function of the spore surface layers.
Annu Rev Microbiol. 2007;61:555-88. doi: 10.1146/annurev.micro.61.080706.093224.
10
Peptide anchoring spore coat assembly to the outer forespore membrane in Bacillus subtilis.
Mol Microbiol. 2006 Dec;62(6):1547-57. doi: 10.1111/j.1365-2958.2006.05468.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验