Department of Natural Resources and Environmental Sciences, Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, 1102 S Goodwin Ave, Urbana, IL 61801, USA.
Microb Ecol. 2010 Aug;60(2):406-18. doi: 10.1007/s00248-010-9722-6. Epub 2010 Jul 22.
Previous observations of correlated community dynamics between phytoplankton and bacteria in lakes indicate that phytoplankton populations may influence bacterial community structure. To investigate the possibility that bacterial use of phytoplankton exudates contributes to observed patterns of community change, we characterized the diversity and dynamics of heterotrophic bacterioplankton with genetic potential to use glycolate, a photorespiration-specific exudate, in five lakes over a 15-week period. Culture-independent approaches were used to track different bacterial phylotypes represented by DNA sequence variation in the functional gene glycolate oxidase subunit D (glcD). glcD gene sequences from freshwater bacteria exhibited broad phylogenetic diversity, including sequences representing the Alpha-, Beta-, and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Verrucomicrobia. The majority of glcD gene sequences were betaproteobacterial, with 48% of the sequences clustering with the glcD gene from the cosmopolitan freshwater species Polynucleobacter necessarius. Terminal restriction fragment length polymorphism fingerprinting of the glcD gene revealed changes in glycolate-utilizing assemblages over time. An average of 39% of within-lake temporal variation in glycolate-utilizing assemblages across five lakes was explained by phytoplankton community composition and dynamics. The interaction between phytoplankton populations and the environment explained an additional 17% of variation on average. These observations offer new insight into the diversity and temporal dynamics of freshwater bacteria with genetic potential to use glycolate and support the hypothesis that algal exudates influence the structure of bacterial communities.
先前的观察表明,湖泊中浮游植物和细菌之间存在相关的群落动态,浮游植物种群可能影响细菌群落结构。为了研究细菌是否利用浮游植物分泌物来解释群落变化的模式,我们在 15 周的时间内对五个湖泊中的异养细菌进行了特征描述,这些细菌具有利用光合作用特有的分泌物——乙醇酸的遗传潜力。我们使用了非培养方法来追踪不同的细菌型,这些细菌型通过功能基因乙醇酸氧化酶亚基 D (glcD)的 DNA 序列变异来表示。来自淡水细菌的 glcD 基因序列表现出广泛的系统发育多样性,包括代表α-、β-和γ-变形菌门、放线菌门、拟杆菌门、厚壁菌门和疣微菌门的序列。glcD 基因序列主要是β变形菌门的,其中 48%的序列与广域淡水物种 Polynucleobacter necessarius 的 glcD 基因聚类。glcD 基因的末端限制性片段长度多态性指纹图谱显示,在五个湖泊中,随着时间的推移,乙醇酸利用菌群发生了变化。五个湖泊中,平均有 39%的时间内湖内乙醇酸利用菌群的变化可以用浮游植物群落组成和动态来解释。浮游植物种群与环境的相互作用平均解释了 17%的变化。这些观察结果为具有利用乙醇酸遗传潜力的淡水细菌的多样性和时间动态提供了新的见解,并支持了藻类分泌物影响细菌群落结构的假说。