Komendantov Alexander O, Trayanova Natalia A, Tasker Jeffrey G
Center for Computational Science, Tulane University, New Orleans, LA 70118, USA.
J Comput Neurosci. 2007 Oct;23(2):143-68. doi: 10.1007/s10827-007-0024-z. Epub 2007 May 5.
Magnocellular neuroendocrine cells (MNCs) of the hypothalamus synthesize the neurohormones vasopressin and oxytocin, which are released into the blood and exert a wide spectrum of actions, including the regulation of cardiovascular and reproductive functions. Vasopressin- and oxytocin-secreting neurons have similar morphological structure and electrophysiological characteristics. A realistic multicompartmental model of a MNC with a bipolar branching structure was developed and calibrated based on morphological and in vitro electrophysiological data in order to explore the roles of ion currents and intracellular calcium dynamics in the intrinsic electrical MNC properties. The model was used to determine the likely distributions of ion conductances in morphologically distinct parts of the MNCs: soma, primary dendrites and secondary dendrites. While reproducing the general electrophysiological features of MNCs, the model demonstrates that the differential spatial distributions of ion channels influence the functional expression of MNC properties, and reveals the potential importance of dendritic conductances in these properties.
下丘脑的大细胞神经内分泌细胞(MNCs)合成神经激素血管加压素和催产素,这些激素释放到血液中并发挥广泛的作用,包括调节心血管和生殖功能。分泌血管加压素和催产素的神经元具有相似的形态结构和电生理特征。基于形态学和体外电生理数据,开发并校准了具有双极分支结构的MNCs的真实多室模型,以探讨离子电流和细胞内钙动力学在MNCs固有电特性中的作用。该模型用于确定MNCs形态学上不同部分(胞体、初级树突和次级树突)中离子电导的可能分布。在重现MNCs的一般电生理特征时,该模型表明离子通道的差异空间分布会影响MNCs特性的功能表达,并揭示了树突电导在这些特性中的潜在重要性。