隐马尔可夫模型及其在基序发现中的应用。
Hidden Markov model and its applications in motif findings.
作者信息
Wu Jing, Xie Jun
机构信息
Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA.
出版信息
Methods Mol Biol. 2010;620:405-16. doi: 10.1007/978-1-60761-580-4_13.
Hidden Markov models have wide applications in pattern recognition. In genome sequence analysis, hidden Markov models (HMMs) have been applied to the identification of regions of the genome that contain regulatory information, i.e., binding sites. In higher eukaryotes, the regulatory information is organized into modular units called cis-regulatory modules. Each module contains multiple binding sites for a specific combination of several transcription factors. In this chapter, we gave a brief review of hidden Markov models, standard algorithms from HMM, and their applications to motif findings. We then introduce the application of HMM to a complex system in which an HMM is combined with Bayesian inference to identify transcription factor binding sites and cis-regulatory modules.
隐马尔可夫模型在模式识别中有着广泛的应用。在基因组序列分析中,隐马尔可夫模型(HMMs)已被用于识别基因组中包含调控信息的区域,即结合位点。在高等真核生物中,调控信息被组织成称为顺式调控模块的模块化单元。每个模块包含几个转录因子特定组合的多个结合位点。在本章中,我们简要回顾了隐马尔可夫模型、HMM的标准算法及其在基序发现中的应用。然后,我们介绍了HMM在一个复杂系统中的应用,其中HMM与贝叶斯推理相结合以识别转录因子结合位点和顺式调控模块。