Suppr超能文献

环孢素的毒代动力学效应反映在健康个体单次给药后尿液中的代谢物谱中。

Toxicodynamic effects of ciclosporin are reflected by metabolite profiles in the urine of healthy individuals after a single dose.

机构信息

Department of Anesthesiology, University of Colorado, Denver, CO 80045-7503, USA.

出版信息

Br J Clin Pharmacol. 2010 Aug;70(2):241-51. doi: 10.1111/j.1365-2125.2010.03689.x.

Abstract

WHAT IS ALREADY KNOWN ABOUT THE SUBJECT * Ciclosporin's nephrotoxicity initially targets the proximal tubule and is, at least in part, driven by increased formation of oxygen radicals. * (1)H-nuclear magnetic resonance spectroscopy (NMR)- and mass spectrometry (MS)-based biochemical profiling (metabolomics) allows for the sensitive detection of metabolite pattern changes in urine. * In systematic studies in rats we showed that ciclosporin caused urine metabolite pattern changes typical for proximal tubule damage and that these pattern changes seemed to be more sensitive than established clinical kidney function markers such as serum creatinine concentrations. WHAT THIS PAPER ADDS * This study showed that urine metabolite pattern changes as assessed by (1)H-NMR and HPLC-MS are sensitive enough to detect the effect of ciclosporin as early as 4 h after a single oral dose. * In our previous rat studies, changes in urine metabolite pattern in response to ciclosporin translated into healthy humans, indicating the involvement of the same toxicodynamic mechanisms. * The results provide proof of concept for further development of this combination molecular marker strategy into diagnostic tools for the detection and monitoring of drug nephrotoxicity. AIMS The immunosuppressant ciclosporin is an efficient prophylaxis against transplant organ rejection but its clinical use is limited by its nephrotoxicity. Our previous systematic studies in the rat indicated urine metabolite pattern changes to be sensitive indicators of the negative effects of ciclosporin on the kidney. To translate these results, we conducted an open label, placebo-controlled, crossover study assessing the time-dependent toxicodynamic effects of a single oral ciclosporin dose (5 mg kg(-1)) on the kidney in 13 healthy individuals. METHODS In plasma and urine samples, ciclosporin and 15-F(2t)-isoprostane concentrations were assessed using HPLC-MS and metabolite profiles using (1)H-NMR spectroscopy. RESULTS The maximum ciclosporin concentrations were 1489 +/- 425 ng ml(-1) (blood) and 2629 +/- 1308 ng ml(-1) (urine). The increase in urinary 15-F(2t)-isoprostane observed 4 h after administration of ciclosporin indicated an increase in oxidative stress. 15-F(2t)-isoprostane concentrations were on average 2.9-fold higher after ciclosporin than after placebo (59.8 +/- 31.2 vs. 20.9 +/- 19.9 pg mg(-1) creatinine, P < 0.02). While there were no conclusive changes in plasma 15-F(2t)-isoprostane concentrations or metabolite patterns, non-targeted metabolome analysis using principal components analysis and partial least square fit analysis revealed significant changes in urine metabolites typically associated with negative effects on proximal tubule cells. The major metabolites that differed between the 4 h urine samples after ciclosporin and placebo were citrate, hippurate, lactate, TMAO, creatinine and phenylalanine. CONCLUSION Changes in urine metabolite patterns as a molecular marker are sufficiently sensitive for the detection of the negative effects of ciclosporin on the kidney after a single oral dose.

摘要

已知关于该主题的信息

  • 环孢素的肾毒性最初靶向近端肾小管,并且至少部分是由氧自由基形成增加驱动的。* (1)H 核磁共振波谱(NMR)和质谱(MS)为基础的生化分析(代谢组学)允许敏感地检测尿液中代谢物图谱变化。* 在对大鼠的系统研究中,我们表明环孢素引起了典型的近端肾小管损伤的尿液代谢物图谱变化,并且这些图谱变化似乎比血清肌酐浓度等已建立的临床肾功能标志物更敏感。 这篇论文增加了什么: * 这项研究表明,通过(1)H-NMR 和 HPLC-MS 评估的尿液代谢物图谱变化足以检测到单口服剂量后环孢素的作用,早在 4 小时即可检测到。* 在我们之前的大鼠研究中,对环孢素的尿液代谢物图谱变化在健康人中发生了反应,表明涉及相同的毒代动力学机制。* 结果为进一步将这种组合分子标志物策略开发成用于检测和监测药物肾毒性的诊断工具提供了概念证明。 目的: 免疫抑制剂环孢素是预防移植器官排斥反应的有效方法,但由于其肾毒性,其临床应用受到限制。我们之前在大鼠中的系统研究表明,尿液代谢物图谱变化是环孢素对肾脏产生负面影响的敏感指标。为了将这些结果转化为现实,我们进行了一项开放标签、安慰剂对照、交叉研究,评估了单次口服环孢素(5mgkg(-1))剂量对 13 名健康个体肾脏的时间依赖性毒代动力学影响。 方法: 在血浆和尿液样本中,使用 HPLC-MS 评估环孢素和 15-F(2t)-异前列腺素浓度,使用(1)H-NMR 光谱评估代谢物图谱。 结果: 环孢素的最大浓度分别为 1489 +/- 425ngml(-1)(血液)和 2629 +/- 1308ngml(-1)(尿液)。给药后 4 小时观察到的尿液 15-F(2t)-异前列腺素增加表明氧化应激增加。与安慰剂相比,环孢素后的尿 15-F(2t)-异前列腺素浓度平均高 2.9 倍(59.8 +/- 31.2 vs. 20.9 +/- 19.9pgmg(-1)肌酐,P < 0.02)。虽然血浆 15-F(2t)-异前列腺素浓度或代谢物图谱没有明显变化,但使用主成分分析和偏最小二乘拟合分析的非靶向代谢组学分析显示,与近端肾小管细胞的负面影响相关的尿液代谢物发生了显著变化。环孢素和安慰剂后 4 小时尿液样本之间差异的主要代谢物是柠檬酸、马尿酸、乳酸、TMAO、肌酐和苯丙氨酸。 结论: 作为分子标志物的尿液代谢物图谱变化对于检测单次口服剂量后环孢素对肾脏的不良影响足够敏感。

相似文献

2
Metabolic profiles in urine reflect nephrotoxicity of sirolimus and cyclosporine following rat kidney transplantation.
Nephron Exp Nephrol. 2009;111(4):e80-91. doi: 10.1159/000209208. Epub 2009 Mar 17.
4
Everolimus and sirolimus in combination with cyclosporine have different effects on renal metabolism in the rat.
PLoS One. 2012;7(10):e48063. doi: 10.1371/journal.pone.0048063. Epub 2012 Oct 31.
5
Major metabolite of F2-isoprostane in urine may be a more sensitive biomarker of oxidative stress than isoprostane itself.
Am J Clin Nutr. 2012 Aug;96(2):405-14. doi: 10.3945/ajcn.112.034918. Epub 2012 Jul 3.

引用本文的文献

1
Circulating Trimethylamine-N-Oxide Is Elevated in Liver Transplant Recipients.
Int J Mol Sci. 2024 May 30;25(11):6031. doi: 10.3390/ijms25116031.
3
The impact of p53 on aristolochic acid I-induced nephrotoxicity and DNA damage in vivo and in vitro.
Arch Toxicol. 2019 Nov;93(11):3345-3366. doi: 10.1007/s00204-019-02578-4. Epub 2019 Oct 10.
4
Advances in Detection of Kidney Transplant Injury.
Mol Diagn Ther. 2019 Jun;23(3):333-351. doi: 10.1007/s40291-019-00396-z.
5
Urine metabolomics insight into acute kidney injury point to oxidative stress disruptions in energy generation and HS availability.
J Mol Med (Berl). 2017 Dec;95(12):1399-1409. doi: 10.1007/s00109-017-1594-5. Epub 2017 Oct 4.
7
Mycophenolate mofetil enhances the negative effects of sirolimus and tacrolimus on rat kidney cell metabolism.
PLoS One. 2014 Jan 30;9(1):e86202. doi: 10.1371/journal.pone.0086202. eCollection 2014.
8
Lovastatin attenuates effects of cyclosporine A on tight junctions and apoptosis in cultured cortical collecting duct principal cells.
Am J Physiol Renal Physiol. 2013 Aug 1;305(3):F304-13. doi: 10.1152/ajprenal.00074.2013. Epub 2013 May 29.
9
Proteomics and metabolomics in renal transplantation-quo vadis?
Transpl Int. 2013 Mar;26(3):225-41. doi: 10.1111/tri.12003. Epub 2012 Nov 21.
10
Everolimus and sirolimus in combination with cyclosporine have different effects on renal metabolism in the rat.
PLoS One. 2012;7(10):e48063. doi: 10.1371/journal.pone.0048063. Epub 2012 Oct 31.

本文引用的文献

2
Recent developments in kidney transplantation--a critical assessment.
Am J Transplant. 2009 Jun;9(6):1265-71. doi: 10.1111/j.1600-6143.2009.02639.x. Epub 2009 May 13.
3
Metabolic profiles in urine reflect nephrotoxicity of sirolimus and cyclosporine following rat kidney transplantation.
Nephron Exp Nephrol. 2009;111(4):e80-91. doi: 10.1159/000209208. Epub 2009 Mar 17.
5
Metabolomics: a complementary tool in renal transplantation.
Contrib Nephrol. 2008;160:76-87. doi: 10.1159/000125935.
6
Toxicodynamic therapeutic drug monitoring of immunosuppressants: promises, reality, and challenges.
Ther Drug Monit. 2008 Apr;30(2):151-8. doi: 10.1097/FTD.0b013e31816b9063.
7
Human biochemistry of the isoprostane pathway.
J Biol Chem. 2008 Jun 6;283(23):15533-7. doi: 10.1074/jbc.R700047200. Epub 2008 Feb 19.
9
HPLC-atmospheric pressure chemical ionization MS/MS for quantification of 15-F2t-isoprostane in human urine and plasma.
Clin Chem. 2007 Mar;53(3):489-97. doi: 10.1373/clinchem.2006.078972. Epub 2007 Jan 26.
10
BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction.
Am J Physiol Renal Physiol. 2007 Feb;292(2):F513-22. doi: 10.1152/ajprenal.00222.2006. Epub 2006 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验