Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
Int J Health Geogr. 2010 Jul 23;9:39. doi: 10.1186/1476-072X-9-39.
BACKGROUND: Geographic information systems have advanced the ability to both visualize and analyze point data. While point-based maps can be aggregated to differing areal units and examined at varying resolutions, two problems arise 1) the modifiable areal unit problem and 2) any corresponding data must be available both at the scale of analysis and in the same geographic units. Kernel density estimation (KDE) produces a smooth, continuous surface where each location in the study area is assigned a density value irrespective of arbitrary administrative boundaries. We review KDE, and introduce the technique of utilizing an adaptive bandwidth to address the underlying heterogeneous population distributions common in public health research. RESULTS: The density of occurrences should not be interpreted without knowledge of the underlying population distribution. When the effect of the background population is successfully accounted for, differences in point patterns in similar population areas are more discernible; it is generally these variations that are of most interest. A static bandwidth KDE does not distinguish the spatial extents of interesting areas, nor does it expose patterns above and beyond those due to geographic variations in the density of the underlying population. An adaptive bandwidth method uses background population data to calculate a kernel of varying size for each individual case. This limits the influence of a single case to a small spatial extent where the population density is high as the bandwidth is small. If the primary concern is distance, a static bandwidth is preferable because it may be better to define the "neighborhood" or exposure risk based on distance. If the primary concern is differences in exposure across the population, a bandwidth adapting to the population is preferred. CONCLUSIONS: Kernel density estimation is a useful way to consider exposure at any point within a spatial frame, irrespective of administrative boundaries. Utilization of an adaptive bandwidth may be particularly useful in comparing two similarly populated areas when studying health disparities or other issues comparing populations in public health.
背景:地理信息系统提高了可视化和分析点状数据的能力。虽然基于点的地图可以聚合到不同的面域单元,并以不同的分辨率进行检查,但存在两个问题:1)可修改的面域单元问题;2)任何相应的数据必须在分析的比例尺上和相同的地理单元中可用。核密度估计(KDE)生成一个平滑、连续的表面,研究区域中的每个位置都被分配一个密度值,而不考虑任意的行政边界。我们回顾了 KDE,并介绍了利用自适应带宽的技术来解决公共卫生研究中常见的基础异质人口分布问题。
结果:在不了解基础人口分布的情况下,不应解释发生的密度。当成功考虑到背景人口的影响时,在类似人口区域中的点模式差异更加明显;通常这些变化是最感兴趣的。静态带宽 KDE 不能区分有趣区域的空间范围,也不能揭示超出基础人口密度地理变化的模式。自适应带宽方法使用背景人口数据为每个个体案例计算不同大小的核。这限制了单个案例的影响范围在人口密度较高的小空间范围内,因为带宽较小。如果主要关注距离,静态带宽是优选的,因为根据距离定义“邻域”或暴露风险可能更好。如果主要关注人口之间的暴露差异,则首选适应人口的带宽。
结论:核密度估计是一种在空间框架内考虑任何点暴露的有用方法,而不考虑行政边界。在研究健康差距或公共卫生中比较人口等问题时,使用自适应带宽可能特别有用,当比较两个人口相似的区域时。
Int J Health Geogr. 2010-7-23
Cochrane Database Syst Rev. 2022-2-1
Int J Health Geogr. 2015-3-31
Int J Health Geogr. 2018-5-8
Proc Priv Enhanc Technol. 2023-7
J Community Health. 2017-8
Comput Intell Neurosci. 2022
Nicotine Tob Res. 2025-1-22
JMIR Mhealth Uhealth. 2023-6-16
Int J Environ Res Public Health. 2023-3-24
Am J Public Health. 2010-8-19
Int J Health Geogr. 2004-2-26
Environ Plan A. 1984-1
Stat Med. 2000