文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

密度估计和自适应带宽:公共卫生从业者入门指南。

Density estimation and adaptive bandwidths: a primer for public health practitioners.

机构信息

Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.

出版信息

Int J Health Geogr. 2010 Jul 23;9:39. doi: 10.1186/1476-072X-9-39.


DOI:10.1186/1476-072X-9-39
PMID:20653969
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2920858/
Abstract

BACKGROUND: Geographic information systems have advanced the ability to both visualize and analyze point data. While point-based maps can be aggregated to differing areal units and examined at varying resolutions, two problems arise 1) the modifiable areal unit problem and 2) any corresponding data must be available both at the scale of analysis and in the same geographic units. Kernel density estimation (KDE) produces a smooth, continuous surface where each location in the study area is assigned a density value irrespective of arbitrary administrative boundaries. We review KDE, and introduce the technique of utilizing an adaptive bandwidth to address the underlying heterogeneous population distributions common in public health research. RESULTS: The density of occurrences should not be interpreted without knowledge of the underlying population distribution. When the effect of the background population is successfully accounted for, differences in point patterns in similar population areas are more discernible; it is generally these variations that are of most interest. A static bandwidth KDE does not distinguish the spatial extents of interesting areas, nor does it expose patterns above and beyond those due to geographic variations in the density of the underlying population. An adaptive bandwidth method uses background population data to calculate a kernel of varying size for each individual case. This limits the influence of a single case to a small spatial extent where the population density is high as the bandwidth is small. If the primary concern is distance, a static bandwidth is preferable because it may be better to define the "neighborhood" or exposure risk based on distance. If the primary concern is differences in exposure across the population, a bandwidth adapting to the population is preferred. CONCLUSIONS: Kernel density estimation is a useful way to consider exposure at any point within a spatial frame, irrespective of administrative boundaries. Utilization of an adaptive bandwidth may be particularly useful in comparing two similarly populated areas when studying health disparities or other issues comparing populations in public health.

摘要

背景:地理信息系统提高了可视化和分析点状数据的能力。虽然基于点的地图可以聚合到不同的面域单元,并以不同的分辨率进行检查,但存在两个问题:1)可修改的面域单元问题;2)任何相应的数据必须在分析的比例尺上和相同的地理单元中可用。核密度估计(KDE)生成一个平滑、连续的表面,研究区域中的每个位置都被分配一个密度值,而不考虑任意的行政边界。我们回顾了 KDE,并介绍了利用自适应带宽的技术来解决公共卫生研究中常见的基础异质人口分布问题。

结果:在不了解基础人口分布的情况下,不应解释发生的密度。当成功考虑到背景人口的影响时,在类似人口区域中的点模式差异更加明显;通常这些变化是最感兴趣的。静态带宽 KDE 不能区分有趣区域的空间范围,也不能揭示超出基础人口密度地理变化的模式。自适应带宽方法使用背景人口数据为每个个体案例计算不同大小的核。这限制了单个案例的影响范围在人口密度较高的小空间范围内,因为带宽较小。如果主要关注距离,静态带宽是优选的,因为根据距离定义“邻域”或暴露风险可能更好。如果主要关注人口之间的暴露差异,则首选适应人口的带宽。

结论:核密度估计是一种在空间框架内考虑任何点暴露的有用方法,而不考虑行政边界。在研究健康差距或公共卫生中比较人口等问题时,使用自适应带宽可能特别有用,当比较两个人口相似的区域时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/8acd7ca031ba/1476-072X-9-39-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/f7812b3d2c11/1476-072X-9-39-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/2739805b69ec/1476-072X-9-39-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/c12ae33a2bd3/1476-072X-9-39-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/64babc36416c/1476-072X-9-39-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/0a029d593812/1476-072X-9-39-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/78afcd5e1054/1476-072X-9-39-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/f46acf78d0b5/1476-072X-9-39-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/db787eda8b9e/1476-072X-9-39-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/8acd7ca031ba/1476-072X-9-39-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/f7812b3d2c11/1476-072X-9-39-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/2739805b69ec/1476-072X-9-39-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/c12ae33a2bd3/1476-072X-9-39-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/64babc36416c/1476-072X-9-39-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/0a029d593812/1476-072X-9-39-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/78afcd5e1054/1476-072X-9-39-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/f46acf78d0b5/1476-072X-9-39-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/db787eda8b9e/1476-072X-9-39-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2573/2920858/8acd7ca031ba/1476-072X-9-39-9.jpg

相似文献

[1]
Density estimation and adaptive bandwidths: a primer for public health practitioners.

Int J Health Geogr. 2010-7-23

[2]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[3]
Comparing adaptive and fixed bandwidth-based kernel density estimates in spatial cancer epidemiology.

Int J Health Geogr. 2015-3-31

[4]
Geostatistical analysis of disease data: accounting for spatial support and population density in the isopleth mapping of cancer mortality risk using area-to-point Poisson kriging.

Int J Health Geogr. 2006-11-30

[5]
Evaluation of threshold selection methods for adaptive kernel density estimation in disease mapping.

Int J Health Geogr. 2018-5-8

[6]
A spatial obesity risk score for describing the obesogenic environment using kernel density estimation: development and parameter variation.

BMC Med Res Methodol. 2023-3-17

[7]
Privacy by Projection: Federated Population Density Estimation by Projecting on Random Features.

Proc Priv Enhanc Technol. 2023-7

[8]
Using GIS Mapping to Target Public Health Interventions: Examining Birth Outcomes Across GIS Techniques.

J Community Health. 2017-8

[9]
Assessment of Ship-Overtaking Situation Based on Swarm Intelligence Improved KDE.

Comput Intell Neurosci. 2022

[10]
Transforming geographic scale: a comparison of combined population and areal weighting to other interpolation methods.

Int J Health Geogr. 2017-8-7

引用本文的文献

[1]
Geospatial heterogeneity of hotspots for incidence and late-stage diagnosis of breast, colorectal, and lung cancer.

Res Sq. 2025-8-22

[2]
Impact of Different Greenspace Metrics on Cardiovascular Disease Incidence in Urban Settings: A Comparative Analysis.

J Urban Health. 2025-4

[3]
Correlation Among Neighborhood-Level Measures of the Tobacco Retail Environment.

Nicotine Tob Res. 2025-1-22

[4]
Neighbourhood inequities in the availability of retailers selling tobacco products: a systematic review.

Tob Control. 2025-5-15

[5]
Social-spatial network structures among young urban and suburban persons who inject drugs in a large metropolitan area.

Int J Drug Policy. 2023-12

[6]
Using Smartphone Survey and GPS Data to Inform Smoking Cessation Intervention Delivery: Case Study.

JMIR Mhealth Uhealth. 2023-6-16

[7]
Identifying the Environmental Determinants of Lung Cancer: A Case Study of Henan, China.

Geohealth. 2023-6-1

[8]
Characteristics of Fatal, Pedestrian-Involved, Motor Vehicle Crashes in West Virginia: A Cross-Sectional and Spatial Analysis.

Int J Environ Res Public Health. 2023-3-24

[9]
Individual Mobility and Uncertain Geographic Context: Real-time Versus Neighborhood Approximated Exposure to Retail Tobacco Outlets Across the US.

J Healthc Inform Res. 2018-10-10

[10]
Spatial Variation in Risk for Highly Pathogenic Avian Influenza Subtype H5N6 Viral Infections in South Korea: Poultry Population-Based Case-Control Study.

Vet Sci. 2022-3-15

本文引用的文献

[1]
Alcohol retail density and demographic predictors of health disparities: a geographic analysis.

Am J Public Health. 2010-8-19

[2]
The complexities of measuring access to parks and physical activity sites in New York City: a quantitative and qualitative approach.

Int J Health Geogr. 2009-6-22

[3]
Spatial accessibility of primary care: concepts, methods and challenges.

Int J Health Geogr. 2004-2-26

[4]
Ecological fallacies and the analysis of areal census data.

Environ Plan A. 1984-1

[5]
Evaluation of spatial filters to create smoothed maps of health data.

Stat Med. 2000

[6]
A classification of disease mapping methods.

Stat Med. 2000

[7]
Exploratory spatial analysis of birth defect rates in an urban population.

Stat Med. 1996

[8]
Monitoring for clusters of disease: application to leukemia incidence in upstate New York.

Am J Epidemiol. 1990-7

[9]
An application of density estimation to geographical epidemiology.

Stat Med. 1990-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索