Agency for Toxic Substances and Disease Registry, Geospatial Research, Analysis, and Services Program, Centers for Disease Control and Prevention, 4770 Buford Highway, MS F09, Atlanta, GA, 30341-3717, USA.
Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA.
Int J Health Geogr. 2017 Aug 7;16(1):29. doi: 10.1186/s12942-017-0102-z.
Transforming spatial data from one scale to another is a challenge in geographic analysis. As part of a larger, primary study to determine a possible association between travel barriers to pediatric cancer facilities and adolescent cancer mortality across the United States, we examined methods to estimate mortality within zones at varying distances from these facilities: (1) geographic centroid assignment, (2) population-weighted centroid assignment, (3) simple areal weighting, (4) combined population and areal weighting, and (5) geostatistical areal interpolation. For the primary study, we used county mortality counts from the National Center for Health Statistics (NCHS) and population data by census tract for the United States to estimate zone mortality. In this paper, to evaluate the five mortality estimation methods, we employed address-level mortality data from the state of Georgia in conjunction with census data. Our objective here is to identify the simplest method that returns accurate mortality estimates.
The distribution of Georgia county adolescent cancer mortality counts mirrors the Poisson distribution of the NCHS counts for the U.S. Likewise, zone value patterns, along with the error measures of hierarchy and fit, are similar for the state and the nation. Therefore, Georgia data are suitable for methods testing. The mean absolute value arithmetic differences between the observed counts for Georgia and the five methods were 5.50, 5.00, 4.17, 2.74, and 3.43, respectively. Comparing the methods through paired t-tests of absolute value arithmetic differences showed no statistical difference among the methods. However, we found a strong positive correlation (r = 0.63) between estimated Georgia mortality rates and combined weighting rates at zone level. Most importantly, Bland-Altman plots indicated acceptable agreement between paired arithmetic differences of Georgia rates and combined population and areal weighting rates.
This research contributes to the literature on areal interpolation, demonstrating that combined population and areal weighting, compared to other tested methods, returns the most accurate estimates of mortality in transforming small counts by county to aggregated counts for large, non-standard study zones. This conceptually simple cartographic method should be of interest to public health practitioners and researchers limited to analysis of data for relatively large enumeration units.
将空间数据从一个尺度转换到另一个尺度是地理分析中的一个挑战。作为一项更大的、主要研究的一部分,该研究旨在确定美国儿科癌症设施的出行障碍与青少年癌症死亡率之间可能存在的关联,我们研究了从这些设施的不同距离内估算死亡率的方法:(1)地理质心赋值,(2)人口加权质心赋值,(3)简单面积加权,(4)人口和面积加权相结合,(5)地质统计学面积插值。在主要研究中,我们使用了美国国家卫生统计中心(NCHS)的县死亡率计数和按普查区划分的人口数据来估算区域死亡率。在本文中,为了评估这五种死亡率估计方法,我们使用了佐治亚州的地址级死亡率数据和普查数据。我们的目标是确定最简单的方法,该方法可以返回准确的死亡率估计值。
佐治亚州青少年癌症县死亡率的分布与美国 NCHS 计数的泊松分布相吻合。同样,州和全国的区域值模式以及层次和拟合的误差度量也相似。因此,佐治亚州的数据适合用于方法测试。佐治亚州的观察计数与五种方法之间的平均绝对数值算术差异分别为 5.50、5.00、4.17、2.74 和 3.43。通过对绝对数值算术差异的配对 t 检验比较这些方法,发现这些方法之间没有统计学差异。然而,我们发现,在区域层面上,估计的佐治亚州死亡率与人口和面积加权相结合的比率之间存在很强的正相关(r=0.63)。最重要的是,Bland-Altman 图表明,佐治亚州比率与人口和面积加权相结合的比率之间的配对算术差异具有可接受的一致性。
这项研究为面积插值文献做出了贡献,表明与其他测试方法相比,人口和面积加权相结合的方法在将小县计数转换为大非标准研究区域的汇总计数时,可以返回最准确的死亡率估计值。这种概念上简单的制图方法应该引起公共卫生从业人员和研究人员的兴趣,他们的分析仅限于相对较大的计数单位的数据。