Suppr超能文献

功能连接描绘了额下回和辅助运动前区在停止信号抑制中的不同作用。

Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition.

作者信息

Duann Jeng-Ren, Ide Jaime S, Luo Xi, Li Chiang-shan Ray

机构信息

Swartz Center for Computational Neuroscience, Institute of Neural Computation, University of California, San Diego, 92093, USA.

出版信息

J Neurosci. 2009 Aug 12;29(32):10171-9. doi: 10.1523/JNEUROSCI.1300-09.2009.

Abstract

The neural basis of motor response inhibition has drawn considerable attention in recent imaging literature. Many studies have used the go/no-go or stop signal task to examine the neural processes underlying motor response inhibition. In particular, showing greater activity during no-go (stop) compared with go trials and during stop success compared with stop error trials, the right inferior prefrontal cortex (IFC) has been suggested by numerous studies as the cortical area mediating response inhibition. Many of these same studies as well as others have also implicated the presupplementary motor area (preSMA) in this process, in accord with a function of the medial prefrontal cortex in goal-directed action. Here we used connectivity analyses to delineate the roles of IFC and preSMA during stop signal inhibition. Specifically, we hypothesized that, as an integral part of the ventral attention system, the IFC responds to a stop signal and expedites the stop process in the preSMA, the primary site of motor response inhibition. This hypothesis predicted that preSMA and primary motor cortex would show functional interconnectivity via the basal ganglia circuitry to mediate response execution or inhibition, whereas the IFC would influence the basal ganglia circuitry via connectivity with preSMA. The results of Granger causality analyses in 57 participants confirmed this hypothesis. Furthermore, psychophysiological interaction showed that, compared with stop errors, stop successes evoked greater effective connectivity between the IFC and preSMA, providing additional support for this hypothesis. These new findings provided evidence critically differentiating the roles of IFC and preSMA during stop signal inhibition and have important implications for our understanding of the component processes of inhibitory control.

摘要

运动反应抑制的神经基础在最近的影像学文献中受到了相当多的关注。许多研究使用了“去/不去”或停止信号任务来检验运动反应抑制背后的神经过程。特别是,与“去”试验相比,在“不去”(停止)试验期间以及与停止错误试验相比,在停止成功试验期间,右下前额叶皮层(IFC)表现出更强的活动,众多研究表明该皮层区域介导反应抑制。许多这些相同的研究以及其他研究也在此过程中涉及到辅助运动前区(preSMA),这与内侧前额叶皮层在目标导向行动中的功能一致。在这里,我们使用连接性分析来描绘IFC和preSMA在停止信号抑制过程中的作用。具体而言,我们假设,作为腹侧注意系统的一个组成部分,IFC对停止信号做出反应,并加速preSMA中的停止过程,preSMA是运动反应抑制的主要部位。这一假设预测,preSMA和初级运动皮层将通过基底神经节回路表现出功能互连,以介导反应执行或抑制,而IFC将通过与preSMA的连接影响基底神经节回路。对57名参与者进行的格兰杰因果分析结果证实了这一假设。此外,心理生理相互作用表明,与停止错误相比,停止成功在IFC和preSMA之间引发了更强的有效连接,为这一假设提供了额外支持。这些新发现为区分IFC和preSMA在停止信号抑制过程中的作用提供了关键证据,并对我们理解抑制控制的组成过程具有重要意义。

相似文献

2
Right inferior frontal cortex and preSMA in response inhibition: An investigation based on PTC model.
Neuroimage. 2025 Feb 1;306:121004. doi: 10.1016/j.neuroimage.2025.121004. Epub 2025 Jan 9.
4
Functional Brain Activation Associated with Inhibitory Control Deficits in Older Adults.
Cereb Cortex. 2016 Jan;26(1):12-22. doi: 10.1093/cercor/bhu165. Epub 2014 Aug 1.
6
Hierarchically Organized Medial Frontal Cortex-Basal Ganglia Loops Selectively Control Task- and Response-Selection.
J Neurosci. 2017 Aug 16;37(33):7893-7905. doi: 10.1523/JNEUROSCI.3289-16.2017. Epub 2017 Jul 17.
8
The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity.
J Neurosci. 2015 Jan 14;35(2):786-94. doi: 10.1523/JNEUROSCI.3093-13.2015.
9
Distinct neural processes support post-success and post-error slowing in the stop signal task.
Neuroscience. 2017 Aug 15;357:273-284. doi: 10.1016/j.neuroscience.2017.06.011. Epub 2017 Jun 13.
10
Aging and inhibitory control of action: cortico-subthalamic connection strength predicts stopping performance.
J Neurosci. 2012 Jun 13;32(24):8401-12. doi: 10.1523/JNEUROSCI.6360-11.2012.

引用本文的文献

1
2
Executive dysfunctions in patients with low-grade gliomas in the supplementary motor area: a neuropsychological perspective.
Front Hum Neurosci. 2025 Jul 18;19:1554063. doi: 10.3389/fnhum.2025.1554063. eCollection 2025.
6
Impulse control deficits among patients with nonsuicidal self-injury: a mediation analysis based on structural imaging.
J Psychiatry Neurosci. 2025 Mar 4;50(2):E73-E84. doi: 10.1503/jpn.240129. Print 2025 Mar-Apr.
7
Grey matter volume differences across Parkinson's disease motor subtypes in the supplementary motor cortex.
Neuroimage Clin. 2025;45:103724. doi: 10.1016/j.nicl.2024.103724. Epub 2024 Dec 10.

本文引用的文献

3
Sub-centimeter scale functional organization in human inferior frontal gyrus.
Neuroimage. 2009 Aug 15;47(2):442-50. doi: 10.1016/j.neuroimage.2009.04.094. Epub 2009 May 12.
4
Selective tuning of the right inferior frontal gyrus during target detection.
Cogn Affect Behav Neurosci. 2009 Mar;9(1):103-12. doi: 10.3758/CABN.9.1.103.
6
The free choice whether or not to respond after stimulus presentation.
Hum Brain Mapp. 2009 Sep;30(9):2971-85. doi: 10.1002/hbm.20722.
7
Functional role of the supplementary and pre-supplementary motor areas.
Nat Rev Neurosci. 2008 Nov;9(11):856-69. doi: 10.1038/nrn2478. Epub 2008 Oct 9.
8
Response inhibition in the stop-signal paradigm.
Trends Cogn Sci. 2008 Nov;12(11):418-24. doi: 10.1016/j.tics.2008.07.005.
9
Impaired conscious and preserved unconscious inhibitory processing in recent onset schizophrenia.
Psychol Med. 2009 Jun;39(6):907-16. doi: 10.1017/S0033291708004340. Epub 2008 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验