Suppr超能文献

使用高斯过程客观地识别地标使用情况并预测家鸽的飞行轨迹。

Objectively identifying landmark use and predicting flight trajectories of the homing pigeon using Gaussian processes.

机构信息

Department of Engineering Science, University of Oxford, Oxford, UK.

出版信息

J R Soc Interface. 2011 Feb 6;8(55):210-9. doi: 10.1098/rsif.2010.0301. Epub 2010 Jul 23.

Abstract

Pigeons home along idiosyncratic habitual routes from familiar locations. It has been suggested that memorized visual landmarks underpin this route learning. However, the inability to experimentally alter the landscape on large scales has hindered the discovery of the particular features to which birds attend. Here, we present a method for objectively classifying the most informative regions of animal paths. We apply this method to flight trajectories from homing pigeons to identify probable locations of salient visual landmarks. We construct and apply a Gaussian process model of flight trajectory generation for pigeons trained to home from specific release sites. The model shows increasing predictive power as the birds become familiar with the sites, mirroring the animal's learning process. We subsequently find that the most informative elements of the flight trajectories coincide with landscape features that have previously been suggested as important components of the homing task.

摘要

鸽子从熟悉的地点沿着独特的习惯性路线回家。有人认为,这种路线学习是基于记忆中的视觉地标。然而,由于无法大规模地对景观进行实验性改变,这阻碍了发现鸟类关注的特定特征。在这里,我们提出了一种客观分类动物路径最具信息量区域的方法。我们将这种方法应用于归巢鸽子的飞行轨迹,以确定显著视觉地标可能的位置。我们为从特定释放点训练归巢的鸽子构建并应用了飞行轨迹生成的高斯过程模型。该模型显示出随着鸟类越来越熟悉这些地点,其预测能力逐渐增强,这反映了动物的学习过程。我们随后发现,飞行轨迹中最具信息量的元素与之前被认为是归巢任务重要组成部分的景观特征相吻合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c78/3033027/fd4487242a9d/rsif20100301-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验