Suppr超能文献

从产时胎心监护系统模型分类正常和缺氧胎儿。

Classification of normal and hypoxic fetuses from systems modeling of intrapartum cardiotocography.

机构信息

Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada.

出版信息

IEEE Trans Biomed Eng. 2010 Apr;57(4):771-9. doi: 10.1109/TBME.2009.2035818.

Abstract

Recording of maternal uterine pressure (UP) and fetal heart rate (FHR) during labor and delivery is a procedure referred to as cardiotocography. We modeled this signal pair as an input-output system using a system identification approach to estimate their dynamic relation in terms of an impulse response function. We also modeled FHR baseline with a linear fit and FHR variability unrelated to UP using the power spectral density, computed from an auto-regressive model. Using a perinatal database of normal and pathological cases, we trained support-vector-machine classifiers with feature sets from these models. We used the classification in a detection process. We obtained the best results with a detector that combined the decisions of classifiers using both feature sets. It detected half of the pathological cases, with very few false positives (7.5%), 1 h and 40 min before delivery. This would leave sufficient time for an appropriate clinical response. These results clearly demonstrate the utility of our method for the early detection of cases needing clinical intervention.

摘要

分娩过程中记录母体子宫压力(UP)和胎儿心率(FHR)是一种称为胎心监护的程序。我们使用系统识别方法将这个信号对建模为输入-输出系统,以估计它们之间的动态关系,即冲激响应函数。我们还使用线性拟合模型来模拟 FHR 基线,并使用来自自回归模型的功率谱密度来模拟与 UP 无关的 FHR 变异性。使用围产期正常和病理病例数据库,我们使用这些模型的特征集训练支持向量机分类器。我们在检测过程中使用分类。我们使用结合了两个特征集的分类器决策的检测器获得了最佳结果。它在分娩前 1 小时 40 分钟检测到一半的病理病例,且假阳性率非常低(7.5%)。这将为适当的临床反应留出足够的时间。这些结果清楚地表明了我们的方法在早期检测需要临床干预的病例方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验