Suppr超能文献

产科中的人工智能

Artificial intelligence in obstetrics.

作者信息

Ahn Ki Hoon, Lee Kwang-Sig

机构信息

Department of Obstetrics and Gynecology, Korea University Anam Hospital, Seoul, Korea.

AI Center, Korea University Anam Hospital, Seoul, Korea.

出版信息

Obstet Gynecol Sci. 2022 Mar;65(2):113-124. doi: 10.5468/ogs.21234. Epub 2021 Dec 15.

Abstract

This study reviews recent advances on the application of artificial intelligence for the early diagnosis of various maternal-fetal conditions such as preterm birth and abnormal fetal growth. It is found in this study that various machine learning methods have been successfully employed for different kinds of data capture with regard to early diagnosis of maternal-fetal conditions. With the more popular use of artificial intelligence, ethical issues should also be considered accordingly.

摘要

本研究回顾了人工智能在早产和胎儿生长异常等各种母胎疾病早期诊断中的应用进展。本研究发现,各种机器学习方法已成功应用于母胎疾病早期诊断的不同类型数据采集。随着人工智能的更广泛应用,伦理问题也应相应地予以考虑。

相似文献

1
Artificial intelligence in obstetrics.
Obstet Gynecol Sci. 2022 Mar;65(2):113-124. doi: 10.5468/ogs.21234. Epub 2021 Dec 15.
2
Machine learning and disease prediction in obstetrics.
Curr Res Physiol. 2023 May 19;6:100099. doi: 10.1016/j.crphys.2023.100099. eCollection 2023.
3
Application of Artificial Intelligence in Early Diagnosis of Spontaneous Preterm Labor and Birth.
Diagnostics (Basel). 2020 Sep 22;10(9):733. doi: 10.3390/diagnostics10090733.
4
Role of Machine Learning and Artificial Intelligence in Interventional Oncology.
Curr Oncol Rep. 2021 Apr 20;23(6):70. doi: 10.1007/s11912-021-01054-6.
7
Using Machine Learning to Predict Complications in Pregnancy: A Systematic Review.
Front Bioeng Biotechnol. 2022 Jan 19;9:780389. doi: 10.3389/fbioe.2021.780389. eCollection 2021.
8
Intelligent systems in obstetrics and midwifery: Applications of machine learning.
Eur J Midwifery. 2021 Dec 20;5:58. doi: 10.18332/ejm/143166. eCollection 2021.
9
Review: Application of Artificial Intelligence in Phenomics.
Sensors (Basel). 2021 Jun 25;21(13):4363. doi: 10.3390/s21134363.

引用本文的文献

1
An AI-based approach to predict delivery outcome based on measurable factors of pregnant mothers.
PLOS Digit Health. 2025 Feb 5;4(2):e0000543. doi: 10.1371/journal.pdig.0000543. eCollection 2025 Feb.
2
Efficacy of large language models and their potential in Obstetrics and Gynecology education.
Obstet Gynecol Sci. 2024 Nov;67(6):550-556. doi: 10.5468/ogs.24211. Epub 2024 Oct 2.
3
Prediction for Perioperative Stroke Using Intraoperative Parameters.
J Am Heart Assoc. 2024 Aug 20;13(16):e032216. doi: 10.1161/JAHA.123.032216. Epub 2024 Aug 9.
4
Prenatal diagnosis and postnatal outcome of fetal intracranial hemorrhage: a single-center experience.
Obstet Gynecol Sci. 2024 Jul;67(4):393-403. doi: 10.5468/ogs.24097. Epub 2024 Jun 20.
5
A Theoretical Exploration of Artificial Intelligence's Impact on Feto-Maternal Health from Conception to Delivery.
Int J Womens Health. 2024 May 22;16:903-915. doi: 10.2147/IJWH.S454127. eCollection 2024.
6
Potential applications of Chat Generative Pre-trained Transformer in obstetrics and gynecology: comment.
Obstet Gynecol Sci. 2024 May;67(3):341-342. doi: 10.5468/ogs.24027. Epub 2024 Apr 2.
7
Machine learning and disease prediction in obstetrics.
Curr Res Physiol. 2023 May 19;6:100099. doi: 10.1016/j.crphys.2023.100099. eCollection 2023.
9
A deep learning mixed-data type approach for the classification of FHR signals.
Front Bioeng Biotechnol. 2022 Aug 8;10:887549. doi: 10.3389/fbioe.2022.887549. eCollection 2022.

本文引用的文献

1
Deep learning for detecting congenital heart disease in the fetus.
Nat Med. 2021 May;27(5):764-765. doi: 10.1038/s41591-021-01354-1.
2
A Machine Learning Approach to Monitor the Emergence of Late Intrauterine Growth Restriction.
Front Artif Intell. 2021 Mar 8;4:622616. doi: 10.3389/frai.2021.622616. eCollection 2021.
3
Deep learning model for predicting gestational age after the first trimester using fetal MRI.
Eur Radiol. 2021 Jun;31(6):3775-3782. doi: 10.1007/s00330-021-07915-9. Epub 2021 Apr 14.
6
Prediction of newborn's body mass index using nationwide multicenter ultrasound data: a machine-learning study.
BMC Pregnancy Childbirth. 2021 Mar 2;21(1):172. doi: 10.1186/s12884-021-03660-5.
7
Intrahepatic cholestasis of pregnancy: machine-learning algorithm to predict elevated bile acid based on clinical and laboratory data.
Arch Gynecol Obstet. 2021 Sep;304(3):641-647. doi: 10.1007/s00404-021-05994-z. Epub 2021 Feb 19.
8
Recognition of facial expression of fetuses by artificial intelligence (AI).
J Perinat Med. 2021 Feb 8;49(5):596-603. doi: 10.1515/jpm-2020-0537. Print 2021 Jun 25.
9
A machine learning algorithm for predicting maternal readmission for hypertensive disorders of pregnancy.
Am J Obstet Gynecol MFM. 2021 Jan;3(1):100250. doi: 10.1016/j.ajogmf.2020.100250. Epub 2020 Oct 6.
10
The application of machine learning for predicting recurrence in patients with early-stage endometrial cancer: a pilot study.
Obstet Gynecol Sci. 2021 May;64(3):266-273. doi: 10.5468/ogs.20248. Epub 2020 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验