Suppr超能文献

人工智能在妇产科中的应用:这是未来的发展方向吗?

Artificial Intelligence in Obstetrics and Gynaecology: Is This the Way Forward?

机构信息

Faculty of Life Sciences and Medicine, King's College London, London, U.K.

School of Biosciences, Kingston University London, London, U.K.

出版信息

In Vivo. 2019 Sep-Oct;33(5):1547-1551. doi: 10.21873/invivo.11635.

Abstract

An increasing trend in funding towards artificial intelligence (AI) research in medicine has re-animated huge expectations for future applications. Obstetrics and gynaecology remain highly litigious specialities, accounting for a large proportion of indemnity payments due to poor outcomes. Several challenges have to be faced in order to improve current clinical practice in both obstetrics and gynaecology. For instance, a complete understanding of fetal physiology and establishing accurately predictive antepartum and intrapartum monitoring are yet to be achieved. In gynaecology, the complexity of molecular biology results in a lack of understanding of gynaecological cancer, which also contributes to poor outcomes. In this review, we aim to describe some important applications of AI in obstetrics and gynaecology. We also discuss whether AI can lead to a deeper understanding of pathophysiological concepts in obstetrics and gynaecology, allowing delineation of some grey zones, leading to improved healthcare provision. We conclude that AI can be used as a promising tool in obstetrics and gynaecology, as an approach to resolve several longstanding challenges; AI may also be a means to augment knowledge and assist clinicians in decision-making in a variety of areas in obstetrics and gynaecology.

摘要

医学领域对人工智能(AI)研究的资助呈增长趋势,这重新燃起了人们对未来应用的巨大期望。妇产科仍然是高度诉讼的专业,由于不良结果导致大量赔偿。为了改善妇产科的临床实践,必须面对几个挑战。例如,对胎儿生理学的全面了解以及准确预测产前和产时监测尚未实现。在妇科领域,分子生物学的复杂性导致对妇科癌症的理解不足,这也是导致不良结果的原因之一。在这篇综述中,我们旨在描述 AI 在妇产科中的一些重要应用。我们还讨论了 AI 是否可以帮助我们更深入地了解妇产科的病理生理概念,从而划定一些灰色地带,改善医疗服务。我们得出结论,AI 可以作为妇产科的一种有前途的工具,用于解决几个长期存在的挑战;AI 也可以作为一种增强知识和帮助临床医生在妇产科各个领域做出决策的手段。

相似文献

1
Artificial Intelligence in Obstetrics and Gynaecology: Is This the Way Forward?
In Vivo. 2019 Sep-Oct;33(5):1547-1551. doi: 10.21873/invivo.11635.
3
The Transformative Potential of AI in Obstetrics and Gynaecology.
J Obstet Gynaecol Can. 2024 Mar;46(3):102277. doi: 10.1016/j.jogc.2023.102277. Epub 2023 Nov 10.
4
Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology.
Ultrasound Obstet Gynecol. 2020 Oct;56(4):498-505. doi: 10.1002/uog.22122.
5
The traffic light pilot study: assessing the level of evidence for interventions in obstetrics and gynaecology.
J Obstet Gynaecol. 2021 Oct;41(7):1076-1079. doi: 10.1080/01443615.2020.1845635. Epub 2021 Feb 18.
6
[Medical informatics in obstetrics and gynecology - the actual challenge?].
Zentralbl Gynakol. 2003 Nov;125(11):441-5. doi: 10.1055/s-2003-44577.
7
Artificial intelligence as a new answer to old challenges in maternal-fetal medicine and obstetrics.
Technol Health Care. 2024;32(3):1273-1287. doi: 10.3233/THC-231482.
8
Multicentre randomised controlled trials in obstetrics and gynaecology: an analysis of trends over three decades.
BJOG. 2009 Jul;116(8):1130-4. doi: 10.1111/j.1471-0528.2009.02167.x. Epub 2009 May 12.
9
Progress in obstetrics and gynaecology - evidence-based practices and practice-based evidence reviews.
Singapore Med J. 2017 Jun;58(6):283-284. doi: 10.11622/smedj.2017047.
10
Validation of an emergency triage scale for obstetrics and gynaecology: a prospective study.
BJOG. 2017 Nov;124(12):1867-1873. doi: 10.1111/1471-0528.14535. Epub 2017 Mar 15.

引用本文的文献

1
Machine Learning Models for Predicting Gynecological Cancers: Advances, Challenges, and Future Directions.
Cancers (Basel). 2025 Aug 27;17(17):2799. doi: 10.3390/cancers17172799.
2
Ethical-legal implications of AI-powered healthcare in critical perspective.
Front Artif Intell. 2025 Jul 2;8:1619463. doi: 10.3389/frai.2025.1619463. eCollection 2025.
3
Integrating artificial intelligence in healthcare: applications, challenges, and future directions.
Future Sci OA. 2025 Dec;11(1):2527505. doi: 10.1080/20565623.2025.2527505. Epub 2025 Jul 4.
4
Get the Artificial Intelligence (AI) Edge in Obstetrics and Gynaecology.
J Obstet Gynaecol India. 2025 Apr;75(2):95-100. doi: 10.1007/s13224-025-02127-3. Epub 2025 Apr 28.
6
Artificial intelligence in gynecologic and obstetric emergencies.
Int J Emerg Med. 2025 Feb 10;18(1):20. doi: 10.1186/s12245-025-00820-8.
7
The Potential of Artificial Intelligence in Unveiling Healthcare's Future.
Cureus. 2024 Oct 16;16(10):e71625. doi: 10.7759/cureus.71625. eCollection 2024 Oct.
8
Revolutionizing Menopause Management: Harnessing the Potential of Artificial Intelligence.
J Midlife Health. 2024 Apr-Jun;15(2):53-54. doi: 10.4103/jmh.jmh_104_24. Epub 2024 Jul 5.
9
A Theoretical Exploration of Artificial Intelligence's Impact on Feto-Maternal Health from Conception to Delivery.
Int J Womens Health. 2024 May 22;16:903-915. doi: 10.2147/IJWH.S454127. eCollection 2024.
10
A Comprehensive Review of the Role of Artificial Intelligence in Obstetrics and Gynecology.
Cureus. 2023 Feb 12;15(2):e34891. doi: 10.7759/cureus.34891. eCollection 2023 Feb.

本文引用的文献

1
The Role of KRAS in Endometrial Cancer: A Mini-Review.
Anticancer Res. 2019 Feb;39(2):533-539. doi: 10.21873/anticanres.13145.
2
Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018.
J Assist Reprod Genet. 2019 Apr;36(4):591-600. doi: 10.1007/s10815-019-01408-x. Epub 2019 Jan 28.
3
Patient and primary care delays in the diagnostic pathway of gynaecological cancers: a systematic review of influencing factors.
Br J Gen Pract. 2019 Feb;69(679):e106-e111. doi: 10.3399/bjgp19X700781. Epub 2019 Jan 14.
4
Cancer of the corpus uteri.
Int J Gynaecol Obstet. 2018 Oct;143 Suppl 2:37-50. doi: 10.1002/ijgo.12612.
5
Artificial Intelligence in Surgery: Promises and Perils.
Ann Surg. 2018 Jul;268(1):70-76. doi: 10.1097/SLA.0000000000002693.
7
Neonatal brain injuries in England: population-based incidence derived from routinely recorded clinical data held in the National Neonatal Research Database.
Arch Dis Child Fetal Neonatal Ed. 2018 Jul;103(4):F301-F306. doi: 10.1136/archdischild-2017-313707. Epub 2017 Oct 22.
8
Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches.
AJNR Am J Neuroradiol. 2018 Feb;39(2):208-216. doi: 10.3174/ajnr.A5391. Epub 2017 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验