Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA.
J Biol Chem. 2010 Oct 8;285(41):31472-83. doi: 10.1074/jbc.M110.129213. Epub 2010 Jul 27.
The canonical heptahelical bundle architecture of seven-transmembrane domain (7TM) receptors is intertwined by three intra- and three extracellular loops, whose local conformations are important in receptor signaling. Many 7TM receptors contain a cysteine residue in the third extracellular loop (EC3) and a complementary cysteine residue on the N terminus. The functional role of such EC3-N terminus conserved cysteine pairs remains unclear. This study explores the role of the EC3-N terminus cysteine pairs on receptor conformation and G protein activation by disrupting them in the chemokine receptor CXCR4, while engineering a novel EC3-N terminus cysteine pair into the complement factor 5a receptor (C5aR), a chemo attractant receptor that lacks it. Mutated CXCR4 and C5aRs were expressed in engineered yeast. Mutation of the cysteine pair with the serine pair (C28S/C274S) in constitutively active mutant CXCR4 abrogated the receptor activation, whereas mutation with the aromatic pair (C28F-C274F) or the salt bridge pair (C28R/C274E), respectively, rescued or retained the receptor activation in response to CXCL12. In this context, the cysteine pair (Cys(30) and Cys(272)) engineered into the EC3-N terminus (Ser(30) and Ser(272)) of a novel constitutively active mutant of C5aR restrained the constitutive signaling without affecting the C5a-induced activation. Further mutational studies demonstrated a previously unappreciated role for Ser(272) on EC3 of C5aR and its interaction with the N terminus, thus defining a new microswitch region within the C5aR. Similar results were obtained with mutated CXCR4 and C5aRs expressed in COS-7 cells. These studies demonstrate a novel role of the EC3-N terminus cysteine pairs in G protein-coupled receptor activation and signaling.
七跨膜域(7TM)受体的规范七螺旋束结构由三个细胞内和三个细胞外环交织而成,其局部构象在受体信号转导中很重要。许多 7TM 受体在第三细胞外环(EC3)中含有一个半胱氨酸残基,在 N 末端含有一个互补的半胱氨酸残基。这种 EC3-N 末端保守半胱氨酸对的功能作用尚不清楚。本研究通过破坏趋化因子受体 CXCR4 中的 EC3-N 末端半胱氨酸对,同时在缺乏该半胱氨酸对的趋化吸引受体补体因子 5a 受体(C5aR)中构建一个新的 EC3-N 末端半胱氨酸对,来探索它们在受体构象和 G 蛋白激活中的作用。突变的 CXCR4 和 C5aR 在工程酵母中表达。在组成型激活突变 CXCR4 中,用丝氨酸对半胱氨酸对(C28S/C274S)进行突变,可使受体失活,而用芳香族半胱氨酸对(C28F-C274F)或盐桥对半胱氨酸对(C28R/C274E)进行突变,分别恢复或保留了 CXCL12 对受体的激活。在这种情况下,工程构建到新型组成型激活突变体 C5aR 的 EC3-N 末端(Ser30 和 Ser272)的半胱氨酸对(Cys30 和 Cys272)抑制了组成型信号转导,而不影响 C5a 诱导的激活。进一步的突变研究表明,C5aR 的 EC3 上的 Ser272 及其与 N 末端的相互作用具有以前未被认识的作用,从而定义了 C5aR 内的一个新的微开关区域。在 COS-7 细胞中表达的突变型 CXCR4 和 C5aR 也得到了类似的结果。这些研究表明,EC3-N 末端半胱氨酸对在 G 蛋白偶联受体的激活和信号转导中具有新的作用。