MolLife Design LLC, St. Louis, Missouri 63141, USA.
Proteins. 2012 Jan;80(1):71-80. doi: 10.1002/prot.23162. Epub 2011 Sep 30.
Previously we demonstrated by random saturation mutagenesis a set of mutations in the extracellular (EC) loops that constitutively activate the C5a receptor (C5aR) (Klco et al., Nat Struct Mol Biol 2005;12:320-326; Klco et al., J Biol Chem 2006;281:12010-12019). In this study, molecular modeling revealed possible conformations for the extracellular loops of the C5a receptors with mutations in the EC2 loop or in the EC3 loop. Comparison of low-energy conformations of the EC loops defined two distinct clusters of conformations typical either for strongly constitutively active mutants of C5aR (the CAM cluster) or for nonconstitutively active mutants (the non-CAM cluster). In the CAM cluster, the EC3 loop was turned towards the transmembrane (TM) helical bundle and more closely interacted with EC2 than in the non-CAM cluster. This suggested a structural mechanism of constitutive activity where EC3 contacts EC2 leading to EC2 interactions with helix TM3, thus triggering movement of TM7 towards TM2 and TM3. The movement initiates rearrangement of the system of hydrogen bonds between TM2, TM3 and TM7 including formation of the hydrogen bond between the side chains of D82(2.50) in TM2 and N296(7.49) in TM7, which is crucial for formation of the activated states of the C5a receptors (Nikiforovich et al., Proteins: Struct Funct Gene 2011;79:787-802). Since the relative large length of EC3 in C5aR (13 residues) is comparable with those in many other members of rhodopsin family of GPCRs (13-19 residues), our findings might reflect general mechanisms of receptor constitutive activation. The very recent X-ray structure of the agonist-induced constitutively active mutant of rhodopsin (Standfuss et al., Nature 2011;471:656-660) is discussed in view of our modeling results.
此前,我们通过随机饱和诱变在细胞外 (EC) 环中发现了一组突变,这些突变可使 C5a 受体 (C5aR) 持续激活 (Klco 等人,Nat Struct Mol Biol 2005;12:320-326;Klco 等人,J Biol Chem 2006;281:12010-12019)。在这项研究中,分子建模揭示了 EC2 环或 EC3 环发生突变的 C5a 受体细胞外环的可能构象。比较 EC 环的低能构象,定义了两个截然不同的构象簇,分别代表 C5aR 的强持续激活突变体 (CAM 簇) 或非持续激活突变体 (非-CAM 簇)。在 CAM 簇中,EC3 环朝向跨膜 (TM) 螺旋束,与 EC2 的相互作用比在非-CAM 簇中更紧密。这表明了一种组成型激活的结构机制,其中 EC3 与 EC2 接触,导致 EC2 与 TM3 相互作用,从而引发 TM7 向 TM2 和 TM3 移动。该运动引发 TM2、TM3 和 TM7 之间氢键系统的重排,包括 TM2 中 D82(2.50)侧链和 TM7 中 N296(7.49)侧链之间氢键的形成,这对于 C5a 受体的激活状态的形成至关重要 (Nikiforovich 等人,Proteins: Struct Funct Gene 2011;79:787-802)。由于 C5aR 中 EC3 的相对较长长度 (13 个残基) 与许多其他视紫红质家族 GPCR 中的长度相当 (13-19 个残基),我们的发现可能反映了受体组成型激活的一般机制。鉴于我们的建模结果,讨论了最近关于激动剂诱导的组成型激活视紫红质突变体的 X 射线结构 (Standfuss 等人,Nature 2011;471:656-660)。