Montaville Pierre, Jamin Nadège
CEA, iBiTecs, URA 2096, SB2SM, Gif-sur-Yvette, France.
Methods Mol Biol. 2010;654:261-82. doi: 10.1007/978-1-60761-762-4_14.
NMR is an essential tool to characterize the structure, dynamics, and interactions of biomolecules at an atomic level. Its application to membrane protein (MP) structure determination is challenging and currently an active and rapidly developing field. Main difficulties are the low sensitivity of the technique, the size limitation, and the intrinsic motional properties of the system under investigation. Solution and solid-state NMR (ssNMR) have common and own specific requirements. Solution NMR requires a careful choice of the detergent, elaborated stable isotope labelling schemes to overcome signal overlaps and to collect distance restraints. Excessive spectra crowding hampered large MP structure determination by ssNMR, and so far only high resolution structure of small or fragments of MP have been determined. However, ssNMR provides the unique opportunity to obtain atomic level information of MP in phospholipid bilayers such as orientation of the protein in the membrane. Specific and careful sample preparations are required in combination with uniformly and partially labelled protein for ssNMR spectra assignment. Distance restraints measurements benefit from methodologies currently developed for small soluble proteins in micro-crystalline state.Recent advances in the field increased the releasing rate of high resolution MP structures, providing unprecedented structural and dynamics information making NMR a powerful tool for structural and functional membrane protein studies.
核磁共振是在原子水平上表征生物分子结构、动力学和相互作用的重要工具。其在膜蛋白(MP)结构测定中的应用具有挑战性,目前是一个活跃且快速发展的领域。主要困难在于该技术的低灵敏度、尺寸限制以及所研究系统的固有运动特性。溶液核磁共振和固体核磁共振(ssNMR)有共同的和各自特定的要求。溶液核磁共振需要仔细选择去污剂,精心设计稳定同位素标记方案以克服信号重叠并收集距离约束。过多的谱峰拥挤阻碍了通过ssNMR测定大的MP结构,到目前为止,仅确定了小的MP或其片段的高分辨率结构。然而,ssNMR提供了独特的机会来获取MP在磷脂双分子层中的原子水平信息,例如蛋白质在膜中的取向。对于ssNMR谱图归属,需要结合均匀和部分标记的蛋白质进行特定且仔细的样品制备。距离约束测量受益于目前为微晶状态下的小可溶性蛋白质开发的方法。该领域的最新进展提高了高分辨率MP结构的解析速度,提供了前所未有的结构和动力学信息,使核磁共振成为研究膜蛋白结构和功能的强大工具。