Patching Simon G
a School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds , UK.
Mol Membr Biol. 2015 Aug-Dec;32(5-8):156-78. doi: 10.3109/09687688.2016.1139754. Epub 2016 Feb 8.
Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.
固态核磁共振(NMR)具有独特的能力,能够获得三维结构,并测量天然脂质双层中膜蛋白的原子分辨率结构和动态信息。使用两种主要方法,通过固态NMR确定的整合膜蛋白结构的数量和复杂性不断增加。取向样品固态NMR使用宏观排列的脂质双层来获得取向限制,这些限制定义了嵌入肽和蛋白质的二级结构和整体折叠,以及它们在脂质双层中的取向和拓扑结构。魔角旋转(MAS)固态NMR使用未取向的快速旋转样品来获得距离和扭转角限制,这些限制定义了三级结构和螺旋堆积排列。文中描述了所有当前蛋白质结构的细节,突出了实验策略和其他技术进步方面的进展。一些结构源自结合固态和溶液态NMR信息,还有一些使用固态NMR来完善X射线晶体结构。固态NMR还验证了通过溶液态NMR和X射线晶体学在不同膜模拟物中确定的蛋白质结构,因此它是其他结构生物学技术的补充。通过持续努力识别膜蛋白靶点,并开发表达、同位素标记和样品制备策略、探针技术、NMR实验、计算和建模方法,以及与其他技术相结合,使用固态NMR确定更多具有生物学和生物医学重要性的膜蛋白结构应该是可行的。这将提供三维结构和原子分辨率结构信息,用于表征生理脂质双层条件下膜蛋白的配体和药物相互作用、动力学和分子机制。