Suppr超能文献

酶设计的评估和排名。

Evaluation and ranking of enzyme designs.

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.

出版信息

Protein Sci. 2010 Sep;19(9):1760-73. doi: 10.1002/pro.462.

Abstract

In 2008, a successful computational design procedure was reported that yielded active enzyme catalysts for the Kemp elimination. Here, we studied these proteins together with a set of previously unpublished inactive designs to determine the sources of activity or lack thereof, and to predict which of the designed structures are most likely to be catalytic. Methods that range from quantum mechanics (QM) on truncated model systems to the treatment of the full protein with ONIOM QM/MM and AMBER molecular dynamics (MD) were explored. The most effective procedure involved molecular dynamics, and a general MD protocol was established. Substantial deviations from the ideal catalytic geometries were observed for a number of designs. Penetration of water into the catalytic site and insufficient residue-packing around the active site are the main factors that can cause enzyme designs to be inactive. Where in the past, computational evaluations of designed enzymes were too time-extensive for practical considerations, it has now become feasible to rank and refine candidates computationally prior to and in conjunction with experimentation, thus markedly increasing the efficiency of the enzyme design process.

摘要

2008 年,报道了一种成功的计算设计程序,该程序产生了 Kemp 消除反应的活性酶催化剂。在这里,我们研究了这些蛋白质以及一组以前未发表的非活性设计,以确定活性或缺乏活性的来源,并预测哪些设计结构最有可能具有催化活性。我们探索了从截断模型系统的量子力学 (QM) 到使用 ONIOM QM/MM 和 AMBER 分子动力学 (MD) 处理整个蛋白质的各种方法。最有效的方法涉及分子动力学,并且建立了一般的 MD 协议。对于许多设计,观察到与理想催化几何形状的实质性偏差。水进入催化部位以及活性部位周围的残基包装不足是导致酶设计失活的主要因素。在过去,由于实际考虑,设计酶的计算评估过于耗时,现在已经可以在实验之前和实验过程中进行计算对候选物进行排序和改进,从而显著提高酶设计过程的效率。

相似文献

1
Evaluation and ranking of enzyme designs.酶设计的评估和排名。
Protein Sci. 2010 Sep;19(9):1760-73. doi: 10.1002/pro.462.
6
Iterative approach to computational enzyme design.迭代式计算酶设计方法。
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3790-5. doi: 10.1073/pnas.1118082108. Epub 2012 Feb 22.
9
Kemp elimination catalysts by computational enzyme design.通过计算酶设计获得的肯普消除催化剂。
Nature. 2008 May 8;453(7192):190-5. doi: 10.1038/nature06879. Epub 2008 Mar 19.

引用本文的文献

1
Computational design of serine hydrolases.丝氨酸水解酶的计算设计
Science. 2025 Apr 18;388(6744):eadu2454. doi: 10.1126/science.adu2454.
2
Computational design of serine hydrolases.丝氨酸水解酶的计算设计
bioRxiv. 2024 Aug 30:2024.08.29.610411. doi: 10.1101/2024.08.29.610411.
5
EnzyHTP Computational Directed Evolution with Adaptive Resource Allocation.EnzyHTP 计算导向进化与自适应资源分配。
J Chem Inf Model. 2023 Sep 11;63(17):5650-5659. doi: 10.1021/acs.jcim.3c00618. Epub 2023 Aug 23.
8
Perspective: Path Sampling Methods Applied to Enzymatic Catalysis.观点:应用于酶催化的路径采样方法。
J Chem Theory Comput. 2022 Nov 8;18(11):6397-6406. doi: 10.1021/acs.jctc.2c00734. Epub 2022 Oct 28.
9
The road to fully programmable protein catalysis.通往完全可编程的蛋白质催化之路。
Nature. 2022 Jun;606(7912):49-58. doi: 10.1038/s41586-022-04456-z. Epub 2022 Jun 1.

本文引用的文献

7
Molecular dynamics prediction of the mechanism of ester hydrolysis in water.水中酯水解机理的分子动力学预测
J Am Chem Soc. 2008 Nov 19;130(46):15232-3. doi: 10.1021/ja8050525. Epub 2008 Oct 22.
8
Kemp elimination catalysts by computational enzyme design.通过计算酶设计获得的肯普消除催化剂。
Nature. 2008 May 8;453(7192):190-5. doi: 10.1038/nature06879. Epub 2008 Mar 19.
9
De novo computational design of retro-aldol enzymes.逆向羟醛缩合酶的从头计算设计
Science. 2008 Mar 7;319(5868):1387-91. doi: 10.1126/science.1152692.
10
Quantum mechanical design of enzyme active sites.酶活性位点的量子力学设计
J Org Chem. 2008 Feb 1;73(3):889-99. doi: 10.1021/jo701974n. Epub 2008 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验