Suppr超能文献

通往完全可编程的蛋白质催化之路。

The road to fully programmable protein catalysis.

机构信息

Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK.

Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland.

出版信息

Nature. 2022 Jun;606(7912):49-58. doi: 10.1038/s41586-022-04456-z. Epub 2022 Jun 1.

Abstract

The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs.

摘要

从头设计高效酶将对化学、生物技术和医学产生深远的影响。过去十年中蛋白质工程的快速发展使我们乐观地认为这一目标是可以实现的。含有金属辅因子和非经典有机催化基团的人工酶的开发表明,蛋白质结构可以如何被优化以利用非蛋白质元素的反应性。与此同时,基于过渡态稳定的基本原理,计算方法已被用于设计用于各种反应的蛋白质催化剂。尽管设计催化剂的活性相当低,但已经广泛使用实验室进化来产生高效酶。对这些系统的结构分析揭示了设计具有更高活性的催化剂所需的高精度。为此,新兴的蛋白质设计方法,包括深度学习,为提高模型准确性提供了特别的前景。在这里,我们总结了该领域的关键进展,并强调了新的创新机会,这应该使我们能够超越当前的技术水平,并能够稳健地设计生物催化剂以满足社会需求。

相似文献

1
The road to fully programmable protein catalysis.通往完全可编程的蛋白质催化之路。
Nature. 2022 Jun;606(7912):49-58. doi: 10.1038/s41586-022-04456-z. Epub 2022 Jun 1.
2
Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism.人工金属酶即将迎来全新的自然代谢途径。
Trends Biotechnol. 2018 Jan;36(1):60-72. doi: 10.1016/j.tibtech.2017.10.003. Epub 2017 Oct 20.
3
Engineering the third wave of biocatalysis.工程化第三波生物催化。
Nature. 2012 May 9;485(7397):185-94. doi: 10.1038/nature11117.
4
The state-of-the-art strategies of protein engineering for enzyme stabilization.用于酶稳定性的蛋白质工程的最先进策略。
Biotechnol Adv. 2019 Jul-Aug;37(4):530-537. doi: 10.1016/j.biotechadv.2018.10.011. Epub 2018 Oct 26.
5
Recent advances in engineering proteins for biocatalysis.用于生物催化的工程蛋白的最新进展。
Biotechnol Bioeng. 2014 Jul;111(7):1273-87. doi: 10.1002/bit.25240. Epub 2014 May 6.
8
Computational tools for designing and engineering biocatalysts.用于设计和构建生物催化剂的计算工具。
Curr Opin Chem Biol. 2009 Feb;13(1):26-34. doi: 10.1016/j.cbpa.2009.02.021. Epub 2009 Mar 16.
9
Unlocking New Reactivities in Enzymes by Iminium Catalysis.通过亚胺催化解锁酶的新反应活性。
Angew Chem Int Ed Engl. 2022 Jul 25;61(30):e202203613. doi: 10.1002/anie.202203613. Epub 2022 Jun 15.

引用本文的文献

3
5
Sequence and taxonomic feature evaluation facilitated the discovery of alcohol oxidases.序列和分类学特征评估促进了醇氧化酶的发现。
Synth Syst Biotechnol. 2025 Apr 22;10(3):907-915. doi: 10.1016/j.synbio.2025.04.014. eCollection 2025 Sep.
9
A Foundational Shift in Models for Enzyme Function.酶功能模型的根本性转变。
J Am Chem Soc. 2025 May 7;147(18):14884-14904. doi: 10.1021/jacs.5c02388. Epub 2025 Apr 25.

本文引用的文献

2
De novo protein design by deep network hallucination.基于深度网络幻觉的从头设计蛋白质。
Nature. 2021 Dec;600(7889):547-552. doi: 10.1038/s41586-021-04184-w. Epub 2021 Dec 1.
3
Evolution of dynamical networks enhances catalysis in a designer enzyme.动态网络的演化增强了设计酶的催化作用。
Nat Chem. 2021 Oct;13(10):1017-1022. doi: 10.1038/s41557-021-00763-6. Epub 2021 Aug 19.
6
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验