Suppr超能文献

迭代式计算酶设计方法。

Iterative approach to computational enzyme design.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3790-5. doi: 10.1073/pnas.1118082108. Epub 2012 Feb 22.

Abstract

A general approach for the computational design of enzymes to catalyze arbitrary reactions is a goal at the forefront of the field of protein design. Recently, computationally designed enzymes have been produced for three chemical reactions through the synthesis and screening of a large number of variants. Here, we present an iterative approach that has led to the development of the most catalytically efficient computationally designed enzyme for the Kemp elimination to date. Previously established computational techniques were used to generate an initial design, HG-1, which was catalytically inactive. Analysis of HG-1 with molecular dynamics simulations (MD) and X-ray crystallography indicated that the inactivity might be due to bound waters and high flexibility of residues within the active site. This analysis guided changes to our design procedure, moved the design deeper into the interior of the protein, and resulted in an active Kemp eliminase, HG-2. The cocrystal structure of this enzyme with a transition state analog (TSA) revealed that the TSA was bound in the active site, interacted with the intended catalytic base in a catalytically relevant manner, but was flipped relative to the design model. MD analysis of HG-2 led to an additional point mutation, HG-3, that produced a further threefold improvement in activity. This iterative approach to computational enzyme design, including detailed MD and structural analysis of both active and inactive designs, promises a more complete understanding of the underlying principles of enzymatic catalysis and furthers progress toward reliably producing active enzymes.

摘要

设计催化任意反应的酶的一般方法是蛋白质设计领域的前沿目标。最近,通过大量变体的合成和筛选,已经为三种化学反应产生了计算设计的酶。在这里,我们提出了一种迭代方法,该方法导致了迄今为止催化效率最高的 Kemp 消除计算设计酶的开发。先前建立的计算技术用于生成初始设计 HG-1,但该设计没有催化活性。使用分子动力学模拟 (MD) 和 X 射线晶体学对 HG-1 的分析表明,无活性可能是由于结合水和活性位点内残基的高灵活性所致。该分析指导了我们的设计过程的改变,将设计移到了蛋白质的内部更深的位置,并产生了活性 Kemp 消除酶 HG-2。该酶与过渡态类似物 (TSA) 的共晶结构表明,TSA 结合在活性位点中,以与预期的催化碱相关的方式相互作用,但相对于设计模型发生了翻转。对 HG-2 的 MD 分析导致了另一个点突变 HG-3,该突变使活性提高了三倍。这种计算酶设计的迭代方法,包括对活性和非活性设计的详细 MD 和结构分析,有望更全面地了解酶催化的基本原理,并进一步推动可靠地产生活性酶的进展。

相似文献

1
Iterative approach to computational enzyme design.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3790-5. doi: 10.1073/pnas.1118082108. Epub 2012 Feb 22.
2
Kemp elimination catalysts by computational enzyme design.
Nature. 2008 May 8;453(7192):190-5. doi: 10.1038/nature06879. Epub 2008 Mar 19.
3
A preorganization oriented computational method for de novo design of Kemp elimination enzymes.
Enzyme Microb Technol. 2022 Oct;160:110093. doi: 10.1016/j.enzmictec.2022.110093. Epub 2022 Jul 2.
4
Molecular dynamics explorations of active site structure in designed and evolved enzymes.
Acc Chem Res. 2015 Apr 21;48(4):1080-9. doi: 10.1021/ar500452q. Epub 2015 Mar 4.
5
Using High-Throughput Molecular Dynamics Simulation to Enhance the Computational Design of Kemp Elimination Enzymes.
J Chem Inf Model. 2023 Feb 27;63(4):1323-1337. doi: 10.1021/acs.jcim.3c00002. Epub 2023 Feb 13.
6
Comparison of designed and randomly generated catalysts for simple chemical reactions.
Protein Sci. 2012 Sep;21(9):1388-95. doi: 10.1002/pro.2125.
7
The evolution of multiple active site configurations in a designed enzyme.
Nat Commun. 2018 Sep 25;9(1):3900. doi: 10.1038/s41467-018-06305-y.
8
Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
Adv Protein Chem Struct Biol. 2011;85:81-142. doi: 10.1016/B978-0-12-386485-7.00003-X.
9
Kemp Eliminase Activity of Ketosteroid Isomerase.
Biochemistry. 2017 Jan 31;56(4):582-591. doi: 10.1021/acs.biochem.6b00762. Epub 2017 Jan 20.
10
Precision is essential for efficient catalysis in an evolved Kemp eliminase.
Nature. 2013 Nov 21;503(7476):418-21. doi: 10.1038/nature12623. Epub 2013 Oct 16.

引用本文的文献

1
Highly efficient enzymes designed from scratch.
Nature. 2025 Jul 8. doi: 10.1038/d41586-025-02054-3.
2
Complete computational design of high-efficiency Kemp elimination enzymes.
Nature. 2025 Jun 18. doi: 10.1038/s41586-025-09136-2.
3
Enzyme miniaturization: Revolutionizing future biocatalysts.
Biotechnol Adv. 2025 Sep;82:108598. doi: 10.1016/j.biotechadv.2025.108598. Epub 2025 May 10.
4
Physics-based modeling in the new era of enzyme engineering.
Nat Comput Sci. 2025 Apr;5(4):279-291. doi: 10.1038/s43588-025-00788-8. Epub 2025 Apr 24.
5
Robust enzyme discovery and engineering with deep learning using CataPro.
Nat Commun. 2025 Mar 20;16(1):2736. doi: 10.1038/s41467-025-58038-4.
7
Emergence of specific binding and catalysis from a designed generalist binding protein.
bioRxiv. 2025 Mar 19:2025.01.30.635804. doi: 10.1101/2025.01.30.635804.
8
Computational design of serine hydrolases.
Science. 2025 Apr 18;388(6744):eadu2454. doi: 10.1126/science.adu2454.
9
Electrostatic Preorganization in Three Distinct Heterogeneous Proteasome β-Subunits.
ACS Catal. 2024 Oct 2;14(20):15237-15249. doi: 10.1021/acscatal.4c04964. eCollection 2024 Oct 18.
10
Enriching productive mutational paths accelerates enzyme evolution.
Nat Chem Biol. 2024 Dec;20(12):1662-1669. doi: 10.1038/s41589-024-01712-3. Epub 2024 Sep 11.

本文引用的文献

1
Design of a switchable eliminase.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6823-7. doi: 10.1073/pnas.1018191108. Epub 2011 Apr 11.
2
Computational design of an endo-1,4-beta-xylanase ligand binding site.
Protein Eng Des Sel. 2011 Jun;24(6):503-16. doi: 10.1093/protein/gzr006. Epub 2011 Feb 24.
3
Optimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution.
J Mol Biol. 2011 Apr 1;407(3):391-412. doi: 10.1016/j.jmb.2011.01.041. Epub 2011 Jan 28.
4
Generation of longer emission wavelength red fluorescent proteins using computationally designed libraries.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20257-62. doi: 10.1073/pnas.1013910107. Epub 2010 Nov 8.
5
Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase.
Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16869-74. doi: 10.1073/pnas.1010381107. Epub 2010 Sep 9.
6
Evaluation and ranking of enzyme designs.
Protein Sci. 2010 Sep;19(9):1760-73. doi: 10.1002/pro.462.
7
Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction.
Science. 2010 Jul 16;329(5989):309-13. doi: 10.1126/science.1190239.
8
Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series.
J Mol Biol. 2010 Mar 5;396(4):1025-42. doi: 10.1016/j.jmb.2009.12.031. Epub 2009 Dec 28.
9
The influence of protein dynamics on the success of computational enzyme design.
J Am Chem Soc. 2009 Oct 7;131(39):14111-5. doi: 10.1021/ja905396s.
10
Kemp elimination catalysts by computational enzyme design.
Nature. 2008 May 8;453(7192):190-5. doi: 10.1038/nature06879. Epub 2008 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验