Suppr超能文献

人类背侧额顶注意网络中动态的上下视野偏好。

Dynamic upper and lower visual field preferences within the human dorsal frontoparietal attention network.

机构信息

Department of Neurology, Charité, Berlin Neuroimaging Center, Berlin, Germany.

出版信息

Hum Brain Mapp. 2011 Jul;32(7):1036-49. doi: 10.1002/hbm.21087. Epub 2010 Jul 27.

Abstract

Both in nonhuman primates and in humans, behavioral differences between the upper and lower visual field have been identified in distinct subprocesses of attention. Advantages of the lower field have been explained by its higher spatial resolution; those of the upper field by its higher efficiency in attentional shifting. The physiological basis of visual field asymmetries within in the frontoparietal attention network (FPN) remains unclear. This study investigates the physiological correlates of upper and lower field preferences within the FPN using event-related functional magnetic resonance imaging. The paradigm separated two attentional subprocesses during a visual search task. Whether in the upper or lower field, the attention of subjects was first directed at stationary locations (spatial orienting) and then shifted between locations to search for a target (visual search) in easy or difficult search displays. Depending on the task phase (spatial orienting vs. easy visual search), upper and lower visual field preferences in the FPN changed. The analysis revealed a lower field preference during stationary spatial orienting and an upper field preference during visual search. We conclude that also higher areas represent upper and lower visual field asymmetries depending on distinct subcomponents of visuospatial attentional processing.

摘要

在非人类灵长类动物和人类中,在注意力的不同子过程中已经确定了上下视野之间的行为差异。下视野的优势可以用其更高的空间分辨率来解释;上视野的优势可以用其在注意力转移方面的更高效率来解释。在额顶注意网络(FPN)内,视野不对称的生理基础仍不清楚。本研究使用事件相关功能磁共振成像来研究 FPN 中上下视野偏好的生理相关性。该范式在视觉搜索任务中分离了两个注意力子过程。无论在视野的上部还是下部,受试者的注意力首先被引导到静止的位置(空间定向),然后在位置之间转移以在简单或困难的搜索显示中搜索目标(视觉搜索)。根据任务阶段(空间定向与简单视觉搜索),FPN 中的上、下视野偏好发生变化。分析结果表明,在静止的空间定向时存在下视野偏好,而在视觉搜索时存在上视野偏好。我们的结论是,根据视觉空间注意力处理的不同子成分,较高的区域也代表了上、下视野的不对称性。

相似文献

1
Dynamic upper and lower visual field preferences within the human dorsal frontoparietal attention network.
Hum Brain Mapp. 2011 Jul;32(7):1036-49. doi: 10.1002/hbm.21087. Epub 2010 Jul 27.
2
Upper and lower visual field differences in perceptual asymmetries.
Brain Res. 2011 Apr 28;1387:108-15. doi: 10.1016/j.brainres.2011.02.063. Epub 2011 Feb 26.
3
Dynamic spatial coding within the dorsal frontoparietal network during a visual search task.
PLoS One. 2008 Sep 9;3(9):e3167. doi: 10.1371/journal.pone.0003167.
5
Visual field asymmetries in attention vary with self-reported attention deficits.
Brain Cogn. 2010 Apr;72(3):355-61. doi: 10.1016/j.bandc.2009.10.014. Epub 2009 Nov 20.
6
Activation patterns in visual cortex reveal receptive field size-dependent attentional modulation.
Brain Res. 2008 Jan 16;1189:90-6. doi: 10.1016/j.brainres.2007.10.100. Epub 2007 Nov 12.
8
Neural bases of the interactions between spatial attention and conscious perception.
Cereb Cortex. 2013 Jun;23(6):1269-79. doi: 10.1093/cercor/bhs087. Epub 2012 Apr 16.
9
Split of attentional resources in human visual cortex.
Vis Neurosci. 2007 Nov-Dec;24(6):817-26. doi: 10.1017/S0952523807070745.
10
Neural correlates of covert orienting of visual spatial attention along vertical and horizontal dimensions.
Brain Res. 2007 Mar 9;1136(1):142-53. doi: 10.1016/j.brainres.2006.12.031. Epub 2006 Dec 15.

引用本文的文献

1
Motion-induced blindness shows spatial anisotropies in conscious perception.
Sci Rep. 2024 Nov 12;14(1):27718. doi: 10.1038/s41598-024-78939-6.
2
Lower visual field preference for the visuomotor control of limb movements in the human dorsomedial parietal cortex.
Brain Struct Funct. 2021 Dec;226(9):2989-3005. doi: 10.1007/s00429-021-02254-3. Epub 2021 Mar 18.
3
Parcellation-based tractographic modeling of the dorsal attention network.
Brain Behav. 2019 Oct;9(10):e01365. doi: 10.1002/brb3.1365. Epub 2019 Sep 19.
4
Lateralized Suppression of Alpha-Band EEG Activity As a Mechanism of Target Processing.
J Neurosci. 2019 Jan 30;39(5):900-917. doi: 10.1523/JNEUROSCI.0183-18.2018. Epub 2018 Dec 6.
5
Inverting the Facing-the-Viewer Bias for Biological Motion Stimuli.
Iperception. 2018 Jan 9;9(1):2041669517750171. doi: 10.1177/2041669517750171. eCollection 2018 Jan-Feb.
6
Are Categorical Spatial Relations Encoded by Shifting Visual Attention between Objects?
PLoS One. 2016 Oct 3;11(10):e0163141. doi: 10.1371/journal.pone.0163141. eCollection 2016.
7
Visual Timing of Structured Dance Movements Resembles Auditory Rhythm Perception.
Neural Plast. 2016;2016:1678390. doi: 10.1155/2016/1678390. Epub 2016 May 30.
8
Face-sex categorization is better above fixation than below: Evidence from the reach-to-touch paradigm.
Cogn Affect Behav Neurosci. 2014 Dec;14(4):1407-19. doi: 10.3758/s13415-014-0282-y.

本文引用的文献

1
Dynamic spatial coding within the dorsal frontoparietal network during a visual search task.
PLoS One. 2008 Sep 9;3(9):e3167. doi: 10.1371/journal.pone.0003167.
2
fMRI reveals greater within- than between-hemifield integration in the human lateral occipital cortex.
Eur J Neurosci. 2008 Jun;27(12):3299-309. doi: 10.1111/j.1460-9568.2008.06270.x.
3
The reorienting system of the human brain: from environment to theory of mind.
Neuron. 2008 May 8;58(3):306-24. doi: 10.1016/j.neuron.2008.04.017.
4
Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex.
Cereb Cortex. 2008 Sep;18(9):2158-68. doi: 10.1093/cercor/bhm242. Epub 2008 Jan 29.
5
Cortical mechanisms for shifting and holding visuospatial attention.
Cereb Cortex. 2008 Jan;18(1):114-25. doi: 10.1093/cercor/bhm036. Epub 2007 Apr 13.
6
Spatial re-orienting of visual attention along the horizontal or the vertical axis.
Exp Brain Res. 2007 Jun;180(1):23-34. doi: 10.1007/s00221-006-0841-8. Epub 2007 Jan 30.
7
Neural correlates of the visual vertical meridian asymmetry.
J Vis. 2006 Nov 8;6(11):1294-306. doi: 10.1167/6.11.12.
8
Sustained division of spatial attention to multiple locations within one hemifield.
Neurosci Lett. 2007 Feb 27;414(1):65-70. doi: 10.1016/j.neulet.2006.12.001. Epub 2007 Jan 4.
9
What determines sustained visual attention? The impact of distracter positions, task difficulty and visual fields compared.
Brain Res. 2007 Feb 16;1133(1):123-35. doi: 10.1016/j.brainres.2006.11.043. Epub 2006 Dec 15.
10
Neuroanatomical dissociation between bottom-up and top-down processes of visuospatial selective attention.
Neuroimage. 2006 Aug 15;32(2):842-53. doi: 10.1016/j.neuroimage.2006.04.177. Epub 2006 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验