Suppr超能文献

改良脉冲连续动脉自旋标记法用于标记单支动脉。

Modified pulsed continuous arterial spin labeling for labeling of a single artery.

机构信息

Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.

出版信息

Magn Reson Med. 2010 Oct;64(4):975-82. doi: 10.1002/mrm.22363.

Abstract

Imaging the contribution of different arterial vessels to the blood supply of the brain can potentially guide the treatment of vascular disease and other disorders. Previously available only with catheter angiography, vessel-selective labeling of arteries has now been demonstrated with pulsed and continuous arterial spin labeling methods. Pulsed continuous labeling, which permits continuous labeling on standard scanner radiofrequency hardware, has been used to encode the contribution of different vessels to the blood supply of the brain. Vessel encoding requires a longer scan and a more complex reconstruction algorithm and may be more sensitive to fluctuations in flow, however. Here a method is presented for single-artery selective labeling, in which a disk around the targeted vessel is labeled. Based on pulsed continuous labeling, this method is achieved by rotating the directions of added in-plane gradients. Numerical simulations of the simplest strategy show good efficiency but poor suppression of labeling at large distances from the target vessel. Amplitude modulation of the rotating in-plane gradients results in better suppression of distant vessels. In vivo results demonstrate highly selective labeling of individual vessels and a rapid falloff of the labeling with distance from the center of the labeling disk, in agreement with the simulations.

摘要

对不同动脉血管为脑部供血所作贡献的成像有可能为血管疾病和其他疾病的治疗提供指导。以前只能通过导管血管造影术来实现动脉血管的选择性标记,而现在脉冲式和连续式动脉自旋标记方法已经可以做到这一点。脉冲式连续标记法可以在标准的磁共振扫描仪射频硬件上实现连续的标记,从而可以对不同血管为脑部供血所作的贡献进行编码。血管编码需要更长的扫描时间和更复杂的重建算法,然而其对血流波动可能更为敏感。本文提出了一种单动脉选择性标记的方法,该方法对目标血管周围的一个圆盘进行标记。这种方法基于脉冲式连续标记,通过旋转外加的平面内梯度的方向来实现。最简单策略的数值模拟显示,该方法的效率很高,但在距离目标血管较远的位置标记的抑制效果较差。旋转平面内梯度的幅度调制可以改善对远处血管的抑制效果。活体实验结果表明,该方法可以实现对单个血管的高度选择性标记,并且标记的强度会随着与标记盘中心距离的增加而迅速衰减,与模拟结果一致。

相似文献

1
Modified pulsed continuous arterial spin labeling for labeling of a single artery.
Magn Reson Med. 2010 Oct;64(4):975-82. doi: 10.1002/mrm.22363.
4
Regional perfusion imaging using pTILT.
J Magn Reson Imaging. 2014 Jul;40(1):192-9. doi: 10.1002/jmri.24346. Epub 2013 Oct 17.
5
Vessel-encoded dynamic magnetic resonance angiography using arterial spin labeling.
Magn Reson Med. 2010 Aug;64(2):430-8. doi: 10.1002/mrm.22412.
6
Vessel-encoded dynamic magnetic resonance angiography using arterial spin labeling.
Magn Reson Med. 2010 Sep;64(3):698-706. doi: 10.1002/mrm.22458.
7
Selective multivessel labeling approach for perfusion territory imaging in pseudo-continuous arterial spin labeling.
Magn Reson Med. 2012 Jul;68(1):214-9. doi: 10.1002/mrm.23219. Epub 2011 Dec 28.
10
Superselective pseudocontinuous arterial spin labeling.
Magn Reson Med. 2010 Sep;64(3):777-86. doi: 10.1002/mrm.22451.

引用本文的文献

1
Arterial Spin Labeling: Key Concepts and Progress Towards Use as a Clinical Tool.
Magn Reson Med Sci. 2024 Jul 1;23(3):352-366. doi: 10.2463/mrms.rev.2024-0013. Epub 2024 Jun 14.
3
Recent Technical Developments in ASL: A Review of the State of the Art.
Magn Reson Med. 2022 Nov;88(5):2021-2042. doi: 10.1002/mrm.29381. Epub 2022 Aug 19.
4
Intracranial 3D and 4D MR Angiography Using Arterial Spin Labeling: Technical Considerations.
Magn Reson Med Sci. 2020 Dec 1;19(4):294-309. doi: 10.2463/mrms.rev.2019-0096. Epub 2019 Nov 22.
5
Highly accelerated vessel-selective arterial spin labeling angiography using sparsity and smoothness constraints.
Magn Reson Med. 2020 Mar;83(3):892-905. doi: 10.1002/mrm.27979. Epub 2019 Sep 19.
6
The advantages of radial trajectories for vessel-selective dynamic angiography with arterial spin labeling.
MAGMA. 2019 Dec;32(6):643-653. doi: 10.1007/s10334-019-00771-1. Epub 2019 Aug 17.
9
Visualizing artery-specific blood flow patterns above the circle of Willis with vessel-encoded arterial spin labeling.
Magn Reson Med. 2019 Mar;81(3):1595-1604. doi: 10.1002/mrm.27507. Epub 2018 Oct 25.
10
Recent progress in ASL.
Neuroimage. 2019 Feb 15;187:3-16. doi: 10.1016/j.neuroimage.2017.12.095. Epub 2018 Jan 3.

本文引用的文献

2
Territorial and microvascular perfusion impairment in brain arteriovenous malformations.
AJNR Am J Neuroradiol. 2009 Feb;30(2):356-61. doi: 10.3174/ajnr.A1351. Epub 2008 Nov 11.
3
Mapping of vertebral artery perfusion territories using arterial spin labeling MRI.
J Magn Reson Imaging. 2008 Sep;28(3):762-6. doi: 10.1002/jmri.21462.
4
Perfusion-weighted MRI to evaluate cerebral autoregulation in aneurysmal subarachnoid haemorrhage.
Neuroradiology. 2008 Nov;50(11):929-38. doi: 10.1007/s00234-008-0424-4. Epub 2008 Jun 17.
7
Homodyne detection in magnetic resonance imaging.
IEEE Trans Med Imaging. 1991;10(2):154-63. doi: 10.1109/42.79473.
9
Vessel-encoded arterial spin-labeling using pseudocontinuous tagging.
Magn Reson Med. 2007 Dec;58(6):1086-91. doi: 10.1002/mrm.21293.
10
Symptomatic carotid artery occlusion: flow territories of major brain-feeding arteries.
Radiology. 2007 Feb;242(2):526-34. doi: 10.1148/radiol.2422060179.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验