Centre for Applied Environmental Decision Analysis, School of Biological Sciences, University of Queensland, St Lucia, QLD 4069, Australia.
Ecol Appl. 2010 Jul;20(5):1476-89. doi: 10.1890/09-0647.1.
Adaptive management has a long history in the natural resource management literature, but despite this, few practitioners have developed adaptive strategies to conserve threatened species. Active adaptive management provides a framework for valuing learning by measuring the degree to which it improves long-run management outcomes. The challenge of an active adaptive approach is to find the correct balance between gaining knowledge to improve management in the future and achieving the best short-term outcome based on current knowledge. We develop and analyze a framework for active adaptive management of a threatened species. Our case study concerns a novel facial tumor disease affecting the Australian threatened species Sarcophilus harrisii: the Tasmanian devil. We use stochastic dynamic programming with Bayesian updating to identify the management strategy that maximizes the Tasmanian devil population growth rate, taking into account improvements to management through learning to better understand disease latency and the relative effectiveness of three competing management options. Exactly which management action we choose each year is driven by the credibility of competing hypotheses about disease latency and by the population growth rate predicted by each hypothesis under the competing management actions. We discover that the optimal combination of management actions depends on the number of sites available and the time remaining to implement management. Our approach to active adaptive management provides a framework to identify the optimal amount of effort to invest in learning to achieve long-run conservation objectives.
自适应管理在自然资源管理文献中有很长的历史,但尽管如此,很少有从业者为保护濒危物种制定适应性策略。主动自适应管理提供了一个通过衡量学习对长期管理结果的改善程度来评估学习价值的框架。主动自适应方法的挑战是在为未来的管理提供知识以改善管理和根据当前知识实现最佳短期结果之间找到正确的平衡。我们开发并分析了一个针对濒危物种的主动自适应管理框架。我们的案例研究涉及一种影响澳大利亚濒危物种袋獾的新型面部肿瘤疾病:塔斯马尼亚恶魔。我们使用带有贝叶斯更新的随机动态规划来确定最大化袋獾种群增长率的管理策略,同时考虑通过学习来改善对疾病潜伏期和三种竞争管理选项相对有效性的管理。每年我们选择的具体管理行动取决于关于疾病潜伏期的竞争假设的可信度以及每个假设在竞争管理行动下预测的种群增长率。我们发现,管理行动的最佳组合取决于可用的地点数量和实施管理的剩余时间。我们的主动自适应管理方法为确定投入学习以实现长期保护目标的最佳努力量提供了一个框架。