Suppr超能文献

濒危物种迁移的最佳适应性管理

Optimal adaptive management for the translocation of a threatened species.

作者信息

Rout Tracy M, Hauser Cindy E, Possingham Hugh P

机构信息

Commonwealth Environment Research Facility (Applied Environmental Decision Analysis), School of Integrative Biology, University of Queensland, St. Lucia, Queensland 4072, Australia.

出版信息

Ecol Appl. 2009 Mar;19(2):515-26. doi: 10.1890/07-1989.1.

Abstract

Active adaptive management (AAM) is an approach to wildlife management that acknowledges our imperfect understanding of natural systems and allows for some resolution of our uncertainty. Such learning may be characterized by risky strategies in the short term. Experimentation is only considered acceptable if it is expected to be repaid by increased returns in the long term, generated by an improved understanding of the system. By setting AAM problems within a decision theory framework, we can find this optimal balance between achieving our objectives in the short term and learning for the long term. We apply this approach to managing the translocation of the bridled nailtail wallaby (Onychogalea fraenata), an endangered species from Queensland, Australia. Our task is to allocate captive-bred animals, between two sites or populations to maximize abundance at the end of the translocation project. One population, at the original site of occupancy, has a known growth rate. A population potentially could be established at a second site of suitable habitat, but we can only learn the growth rate of this new population by monitoring translocated animals. We use a mathematical programming technique called stochastic dynamic programming, which determines optimal management decisions for every possible management trajectory. We find optimal strategies under active and passive adaptive management, which enables us to examine the balance between learning and managing directly. Learning is more often optimal when we have less prior information about the uncertain population growth rate at the new site, when the growth rate at the original site is low, and when there is substantial time remaining in the translocation project. Few studies outside the area of optimal harvesting have framed AAM within a decision theory context. This is the first application to threatened species translocation.

摘要

主动适应性管理(AAM)是一种野生动物管理方法,它承认我们对自然系统的理解并不完善,并允许解决一些不确定性问题。这种学习在短期内可能以风险策略为特征。只有当实验有望在长期内通过对系统的更好理解带来更多回报时,才会被认为是可接受的。通过将AAM问题置于决策理论框架内,我们可以在短期内实现目标与长期学习之间找到这种最佳平衡。我们将这种方法应用于管理鞍背甲尾袋鼠(Onychogalea fraenata)的迁移,这是一种来自澳大利亚昆士兰的濒危物种。我们的任务是在两个地点或种群之间分配圈养繁殖的动物,以使迁移项目结束时的数量最大化。一个种群位于原来的栖息地,其增长率已知。在一个合适的栖息地的第二个地点有可能建立一个种群,但我们只能通过监测迁移的动物来了解这个新种群的增长率。我们使用一种称为随机动态规划的数学规划技术,它为每一种可能的管理轨迹确定最优管理决策。我们在主动和被动适应性管理下找到了最优策略,这使我们能够直接研究学习与管理之间的平衡。当我们对新地点不确定的种群增长率的先验信息较少、原来地点的增长率较低以及迁移项目还有大量时间剩余时,学习往往更优。在最优收获领域之外,很少有研究将AAM置于决策理论背景下。这是首次将其应用于受威胁物种的迁移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验