Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
PLoS One. 2010 Jul 26;5(7):e11786. doi: 10.1371/journal.pone.0011786.
KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1(-/-) cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1(-/-) cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45alpha, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell capacity to scavenge intracellular ROS through an antioxidant pathway involving FoxO1 and SOD2, thus providing novel and useful insights into the understanding of KRIT1 molecular and cellular functions.
KRIT1 是一个与脑动静脉畸形(Cerebral Cavernous Malformations,CCM)相关的基因,CCM 是一种主要的脑血管疾病,其特征为异常扩大和渗漏的毛细血管,易导致癫痫发作、局灶性神经功能缺损和致命性颅内出血。对 CCM 患者 KRIT1 基因的综合分析表明,KRIT1 功能需要严重受损才能导致发病机制。然而,KRIT1 的分子和细胞功能以及 CCM 发病机制仍然是研究挑战。我们发现 KRIT1 在维持细胞内活性氧物种(Reactive Oxygen Species,ROS)稳态的分子机制中发挥重要作用,以防止氧化细胞损伤。特别是,我们证明 KRIT1 的缺失/下调与细胞内 ROS 水平的显著增加有关。相反,在恢复 KRIT1 表达后,KRIT1(-/-)细胞中的 ROS 水平显著且呈剂量依赖性降低。此外,我们表明,ROS 水平的调节通过 KRIT1 的缺失/恢复与抗氧化蛋白 SOD2 以及转录因子 FoxO1 的表达调节密切相关,FoxO1 是细胞对氧化应激反应的主要调节剂,也是 SOD2 水平的调节剂。此外,我们表明,KRIT1 依赖性维持低 ROS 水平有利于下调细胞从增殖生长到静止所需的细胞周期蛋白 D1 表达。最后,我们证明 KRIT1(-/-)细胞中 ROS 水平的升高与细胞对氧化 DNA 损伤的敏感性增加以及 DNA 损伤传感器和修复基因 Gadd45alpha 的显著诱导以及线粒体能量代谢的下降有关。总之,我们的结果表明了一种新的模型,其中 KRIT1 通过增强细胞清除细胞内 ROS 的能力,通过涉及 FoxO1 和 SOD2 的抗氧化途径来限制细胞内氧化剂的积累并防止氧化应激介导的细胞功能障碍和 DNA 损伤,从而为理解 KRIT1 的分子和细胞功能提供了新的有用见解。