Suppr超能文献

微小 RNA 调节对生物人工肌肉功能的影响。

Effect of microRNA modulation on bioartificial muscle function.

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.

出版信息

Tissue Eng Part A. 2010 Dec;16(12):3589-97. doi: 10.1089/ten.TEA.2009.0601. Epub 2010 Aug 28.

Abstract

Cellular therapies have recently employed the use of small RNA molecules, particularly microRNAs (miRNAs), to regulate various cellular processes that may be altered in disease states. In this study, we examined the effect of transient muscle-specific miRNA inhibition on the function of three-dimensional skeletal muscle cultures, or bioartificial muscles (BAMs). Skeletal myoblast differentiation in vitro is enhanced by inhibiting a proliferation-promoting miRNA (miR-133) expressed in muscle tissues. As assessed by functional force measurements in response to electrical stimulation at frequencies ranging from 0 to 20 Hz, peak forces exhibited by BAMs with miR-133 inhibition (anti-miR-133) were on average 20% higher than the corresponding negative control, although dynamic responses to electrical stimulation in miRNA-transfected BAMs and negative controls were similar to nontransfected controls. Immunostaining for alpha-actinin and myosin also showed more distinct striations and myofiber organization in anti-miR-133 BAMs, and fiber diameters were significantly larger in these BAMs over both the nontransfected and negative controls. Compared to the negative control, anti-miR-133 BAMs exhibited more intense nuclear staining for Mef2, a key myogenic differentiation marker. To our knowledge, this study is the first to demonstrate that miRNA mediation has functional effects on tissue-engineered constructs.

摘要

细胞疗法最近采用了小 RNA 分子,特别是 microRNAs(miRNAs),来调节可能在疾病状态下改变的各种细胞过程。在这项研究中,我们研究了瞬时肌肉特异性 miRNA 抑制对三维骨骼肌培养物或生物人工肌肉(BAMs)功能的影响。通过抑制在肌肉组织中表达的促进增殖的 miRNA(miR-133),体外骨骼肌细胞分化得到增强。通过对从 0 到 20 Hz 频率的电刺激的功能力测量来评估,miR-133 抑制(抗 miR-133)的 BAMs 的峰值力平均比相应的阴性对照高 20%,尽管 miRNA 转染的 BAMs 和阴性对照的电刺激的动态反应与未转染的对照相似。抗 miR-133 BAMs 中的α-肌动蛋白和肌球蛋白免疫染色也显示出更明显的条纹和肌纤维组织,并且这些 BAMs 的纤维直径明显大于未转染和阴性对照。与阴性对照相比,抗 miR-133 BAMs 显示出更强的核染色 Mef2,Mef2 是一种关键的肌生成分化标志物。据我们所知,这项研究首次证明 miRNA 介导对组织工程构建物具有功能影响。

相似文献

1
Effect of microRNA modulation on bioartificial muscle function.
Tissue Eng Part A. 2010 Dec;16(12):3589-97. doi: 10.1089/ten.TEA.2009.0601. Epub 2010 Aug 28.
2
Conditions that promote primary human skeletal myoblast culture and muscle differentiation in vitro.
Am J Physiol Cell Physiol. 2014 Feb 15;306(4):C385-95. doi: 10.1152/ajpcell.00179.2013. Epub 2013 Dec 11.
4
TNF-α and IGF1 modify the microRNA signature in skeletal muscle cell differentiation.
Cell Commun Signal. 2015 Jan 29;13:4. doi: 10.1186/s12964-015-0083-0.
7
MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development.
Cell Signal. 2015 Sep;27(9):1895-904. doi: 10.1016/j.cellsig.2015.05.001. Epub 2015 May 6.
8
MicroRNA-351-5p mediates skeletal myogenesis by directly targeting lactamase-β and is regulated by lnc-mg.
FASEB J. 2019 Feb;33(2):1911-1926. doi: 10.1096/fj.201701394RRR. Epub 2018 Sep 14.
9
Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts.
J Biol Chem. 2017 Jun 9;292(23):9540-9550. doi: 10.1074/jbc.M116.773671. Epub 2017 Apr 5.
10
miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation.
J Biol Chem. 2011 Oct 14;286(41):35339-35346. doi: 10.1074/jbc.M111.273276. Epub 2011 Aug 25.

引用本文的文献

2
An Electrical Stimulation Culture System for Daily Maintenance-Free Muscle Tissue Production.
Cyborg Bionic Syst. 2021 Apr 8;2021:9820505. doi: 10.34133/2021/9820505. eCollection 2021.
3
Differential microRNA profiles of intramuscular and secreted extracellular vesicles in human tissue-engineered muscle.
Front Physiol. 2022 Aug 25;13:937899. doi: 10.3389/fphys.2022.937899. eCollection 2022.
4
Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases.
Futur J Pharm Sci. 2022;8(1):24. doi: 10.1186/s43094-022-00413-9. Epub 2022 Apr 1.
5
A multiplexed in vitro assay system for evaluating human skeletal muscle functionality in response to drug treatment.
Biotechnol Bioeng. 2020 Mar;117(3):736-747. doi: 10.1002/bit.27231. Epub 2019 Dec 13.
7
Oxygen consumption in human, tissue-engineered myobundles during basal and electrical stimulation conditions.
APL Bioeng. 2019 May 15;3(2):026103. doi: 10.1063/1.5093417. eCollection 2019 Jun.
8
Modeling the Effect of TNF-α upon Drug-Induced Toxicity in Human, Tissue-Engineered Myobundles.
Ann Biomed Eng. 2019 Jul;47(7):1596-1610. doi: 10.1007/s10439-019-02263-8. Epub 2019 Apr 8.
9
The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models.
Front Physiol. 2018 Aug 22;9:1130. doi: 10.3389/fphys.2018.01130. eCollection 2018.
10
SIRT1 may play a crucial role in overload-induced hypertrophy of skeletal muscle.
J Physiol. 2017 Jun 1;595(11):3361-3376. doi: 10.1113/JP273774. Epub 2017 Apr 28.

本文引用的文献

1
Microfeature guided skeletal muscle tissue engineering for highly organized 3-dimensional free-standing constructs.
Biomaterials. 2009 Feb;30(6):1150-5. doi: 10.1016/j.biomaterials.2008.11.014.
2
Toward microRNA-based therapeutics for heart disease: the sense in antisense.
Circ Res. 2008 Oct 24;103(9):919-28. doi: 10.1161/CIRCRESAHA.108.183426.
3
Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis.
Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):13027-32. doi: 10.1073/pnas.0805038105. Epub 2008 Aug 22.
4
Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart.
J Biol Chem. 2008 Jul 18;283(29):20045-52. doi: 10.1074/jbc.M801035200. Epub 2008 May 5.
5
MEF2: a central regulator of diverse developmental programs.
Development. 2007 Dec;134(23):4131-40. doi: 10.1242/dev.008367. Epub 2007 Oct 24.
6
Tissue engineering of skeletal muscle.
Tissue Eng. 2007 Nov;13(11):2781-90. doi: 10.1089/ten.2006.0408.
7
Regulation of skeletal muscle sarcomere integrity and postnatal muscle function by Mef2c.
Mol Cell Biol. 2007 Dec;27(23):8143-51. doi: 10.1128/MCB.01187-07. Epub 2007 Sep 17.
8
MicroRNA gets down to business.
Nat Biotechnol. 2007 Jun;25(6):631-8. doi: 10.1038/nbt0607-631.
9
MicroRNA-133 controls cardiac hypertrophy.
Nat Med. 2007 May;13(5):613-8. doi: 10.1038/nm1582. Epub 2007 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验