Suppr超能文献

用于重建人类白细胞抗原单倍型的计算方法评估

Evaluation of computational methods for the reconstruction of HLA haplotypes.

作者信息

Castelli E C, Mendes-Junior C T, Veiga-Castelli L C, Pereira N F, Petzl-Erler M L, Donadi E A

机构信息

Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil.

出版信息

Tissue Antigens. 2010 Dec;76(6):459-66. doi: 10.1111/j.1399-0039.2010.01539.x.

Abstract

Human leukocyte antigen (HLA) haplotypes are frequently evaluated for population history inferences and association studies. However, the available typing techniques for the main HLA loci usually do not allow the determination of the allele phase and the constitution of a haplotype, which may be obtained by a very time-consuming and expensive family-based segregation study. Without the family-based study, computational inference by probabilistic models is necessary to obtain haplotypes. Several authors have used the expectation-maximization (EM) algorithm to determine HLA haplotypes, but high levels of erroneous inferences are expected because of the genetic distance among the main HLA loci and the presence of several recombination hotspots. In order to evaluate the efficiency of computational inference methods, 763 unrelated individuals stratified into three different datasets had their haplotypes manually defined in a family-based study of HLA-A, -B, -DRB1 and -DQB1 segregation, and these haplotypes were compared with the data obtained by the following three methods: the Expectation-Maximization (EM) and Excoffier-Laval-Balding (ELB) algorithms using the arlequin 3.11 software, and the PHASE method. When comparing the methods, we observed that all algorithms showed a poor performance for haplotype reconstruction with distant loci, estimating incorrect haplotypes for 38%-57% of the samples considering all algorithms and datasets. We suggest that computational haplotype inferences involving low-resolution HLA-A, HLA-B, HLA-DRB1 and HLA-DQB1 haplotypes should be considered with caution.

摘要

人类白细胞抗原(HLA)单倍型常被用于群体历史推断和关联研究。然而,针对主要HLA位点的现有分型技术通常无法确定等位基因相位和单倍型构成,而这可通过一项耗时且昂贵的基于家系的分离研究来获得。若不进行基于家系的研究,则需通过概率模型进行计算推断以获得单倍型。几位作者已使用期望最大化(EM)算法来确定HLA单倍型,但由于主要HLA位点之间的遗传距离以及多个重组热点的存在,预计会出现较高水平的错误推断。为了评估计算推断方法的效率,在一项关于HLA-A、-B、-DRB1和-DQB1分离的基于家系的研究中,对763名无关个体进行分层并划分为三个不同数据集,手动确定了他们的单倍型,并将这些单倍型与通过以下三种方法获得的数据进行比较:使用arlequin 3.11软件的期望最大化(EM)算法和Excoffier-Laval-Balding(ELB)算法,以及PHASE方法。在比较这些方法时,我们观察到所有算法在重建远距离位点的单倍型时表现不佳,考虑所有算法和数据集,估计有38%-57%的样本单倍型错误。我们建议,涉及低分辨率HLA-A、HLA-B、HLA-DRB1和HLA-DQB1单倍型的计算单倍型推断应谨慎考虑。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验