Takebayashi Satoshi, Fayzullin Robert R, Bansal Richa
Science and Technology Group Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences 8 Arbuzov Street Kazan 420088 Russian Federation.
Chem Sci. 2022 Aug 1;13(32):9202-9209. doi: 10.1039/d2sc03028d. eCollection 2022 Aug 17.
Bond homolysis is one of the most fundamental bond cleavage mechanisms. Thus, understanding of bond homolysis influences the development of a wide range of chemistry. Photolytic bond homolysis and its reverse process have been observed directly using time-resolved spectroscopy. However, direct observation of reversible bond homolysis remains elusive. Here, we report the direct observation of reversible Co-Co bond homolysis using two-dimensional nuclear magnetic resonance exchange spectroscopy (2D EXSY NMR). The characterization of species involved in this homolysis is firmly supported by diffusion ordered NMR spectroscopy (DOSY NMR). The unambiguous characterization of the Co-Co bond homolysis process enabled us to study ligand steric and electronic factors that influence the strength of the Co-Co bond. Understanding of these factors will contribute to rational design of multimetallic complexes with desired physical properties or catalytic activity.
键的均裂是最基本的键断裂机制之一。因此,对键均裂的理解影响着广泛化学领域的发展。光解键均裂及其逆过程已通过时间分辨光谱法直接观测到。然而,可逆键均裂的直接观测仍然难以实现。在此,我们报告了使用二维核磁共振交换光谱法(2D EXSY NMR)对可逆Co-Co键均裂的直接观测。扩散排序核磁共振光谱法(DOSY NMR)有力地支持了参与这种均裂的物种的表征。Co-Co键均裂过程的明确表征使我们能够研究影响Co-Co键强度的配体空间和电子因素。对这些因素的理解将有助于合理设计具有所需物理性质或催化活性的多金属配合物。