Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore, 117602, Singapore.
Nanoscale Res Lett. 2010 Mar 9;5(5):818-22. doi: 10.1007/s11671-010-9566-5.
Localized surface plasmon resonance (LSPR) has been extensively studied as potential chemical and biological sensing platform due to its high sensitivity to local refractive index change induced by molecule adsorbate. Previous experiments have demonstrated the LSPR generated by gold nanoholes and its biosensing. Here, we realize large uniform area of nanoholes on scale of cm2 on glass substrate by nanosphere lithography which is essential for mass production. The morphology of the nanoholes is characterized using scanning electron microscope and atomic force microscope. The LSPR sensitivity of the nanoholes to local refractive index is measured to be 36 nm/RIU. However, the chip has demonstrated high sensitivity and specificity in biosensing: bovine serum albumin adsorption is detected with LSPR peak redshift of 27 nm, and biotin-streptavidin immunoassay renders a LSPR redshift of 11 nm. This work forms a foundation toward the cost-effective, high-throughput, reliable and robust chip-based LSPR biosensor.
局部表面等离子体共振(LSPR)因其对分子吸附引起的局部折射率变化具有高灵敏度而被广泛研究作为潜在的化学和生物传感平台。以前的实验已经证明了金纳米孔产生的 LSPR 及其生物传感。在这里,我们通过纳米球光刻在玻璃衬底上实现了厘米级的大面积纳米孔,这对于大规模生产是必不可少的。纳米孔的形态使用扫描电子显微镜和原子力显微镜进行了表征。测量了纳米孔对局部折射率的 LSPR 灵敏度为 36nm/RIU。然而,该芯片在生物传感中表现出了高灵敏度和特异性:牛血清白蛋白吸附导致 LSPR 峰值红移 27nm,生物素-链霉亲和素免疫测定导致 LSPR 红移 11nm。这项工作为基于成本效益、高通量、可靠和稳健的芯片 LSPR 生物传感器奠定了基础。